1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

1–1 of 1 record found matching your query:

Headers act as filters

      1. Author :
        Pozo, J. L. del; Rouse, M. S.; Mandrekar, J. N.; Steckelberg, J. M.; Patel, R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
      5. Publication :
        Antimicrob Agents Chemother
      6. Products :
      7. Volume :
      8. Issue :
      9. Page Numbers :
      10. Research Area :
      11. Keywords :
        Aza Compounds/pharmacology, Biofilms/drug effects/*growth & development, Electricity/*adverse effects, Pseudomonas/drug effects/*growth & development, Quinolines/pharmacology, Staphylococcus/drug effects/*growth & development, Tobramycin/pharmacology IVIS, Xenogen, Xen30
      12. Abstract :
        The activity of electrical current against planktonic bacteria has previously been demonstrated. The short-term exposure of the bacteria in biofilms to electrical current in the absence of antimicrobials has been shown to have no substantial effect; however, longer-term exposure has not been studied. A previously described in vitro model was used to determine the effect of prolonged exposure (i.e., up to 7 days) to low-intensity (i.e., 20-, 200-, and 2,000-microampere) electrical direct currents on Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms. Dose- and time-dependent killing was observed. A maximum of a 6-log(10)-CFU/cm(2) reduction was observed when S. epidermidis biofilms were exposed to 2,000 microamperes for at least 2 days. A 4- to 5-log(10)-CFU/cm(2) reduction was observed when S. aureus biofilms were exposed to 2,000 microamperes for at least 2 days. Finally, a 3.5- to 5-log(10)-CFU/cm(2) reduction was observed when P. aeruginosa biofilms were exposed to electrical current for 7 days. A higher electrical current intensity correlated with greater decreases in viable bacteria at all time points studied. In conclusion, low-intensity electrical current substantially reduced the numbers of viable bacteria in staphylococcal or Pseudomonas biofilms, a phenomenon we have labeled the “electricidal effect.”
      13. URL :
      14. Call Number :
      15. Serial :