1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

1–1 of 1 record found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Krespi, Y. P.; Kizhner, V.; Nistico, L.; Hall-Stoodley, L.; Stoodley, P.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Am J Otolaryngol
      6. Products :
      7. Volume :
        32
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Biofilms/drug effects/*radiation effects; Ciprofloxacin/*pharmacology; Culture Media; High-Energy Shock Waves; Humans; *Laser Therapy, Low-Level; Methicillin-Resistant Staphylococcus aureus/*growth &; development/physiology/*radiation effects; Microbial Sensitivity Tests; Reference Values; Sensitivity and Specificity; Spectroscopy, Near-Infrared; Staphylococcal Infections/drug therapy
      12. Abstract :
        OBJECTIVE: The aim of the study was to study the efficacy of 2 different lasers in vitro, in disrupting biofilm and killing planktonic pathogenic bacteria. MATERIALS AND METHODS: Biofilms of a stable bioluminescent of Staphylococcus aureus Xen 31 were grown in a 96-well microtiter plate for 3 days. The study included 7 arms: (a) control; (b) ciprofloxacin (3 mg/L, the established minimum inhibitory concentration [MIC]) alone; (c) shock wave (SW) laser alone; (d) near-infrared (NIR) laser alone; (e) SW laser and ciprofloxacin; (f) SW and NIR lasers; (g) SW, NIR lasers, and ciprofloxacin. The results were evaluated with an in vivo imaging system (IVIS) biophotonic system (for live bacteria) and optical density (OD) for total bacteria. RESULTS: Without antibiotics, there was a 43% reduction in OD (P < .05) caused by the combination of SW and NIR suggesting that biofilm had been disrupted. There was an 88% reduction (P < .05) in live biofilm. Ciprofloxacin alone resulted in a decrease of 28% of total live cells (biofilm remaining attached) and 58% of biofilm cells (both P > .05). Ciprofloxacin in combination with SW and SW + NIR lasers caused a decrease of more than 60% in total live biomass and more than 80% of biofilm cells, which was significantly greater than ciprofloxacin alone (P < .05). CONCLUSIONS: We have demonstrated an effective nonpharmacologic treatment method for methicillin-resistant Staphylococcus aureus (MRSA) biofilm disruption and killing using 2 different lasers. The preferred treatment sequence is a SW laser disruption of biofilm followed by NIR laser illumination. Treatment optimization of biofilm is possible with the addition of ciprofloxacin in concentrations consistent with planktonic MIC.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20434806
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10554
Back to Search
Select All  |  Deselect All