1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

1–1 of 1 record found matching your query:

Headers act as filters

      1. Author :
        Dai, T.; Tegos, G. P.; Zhiyentayev, T.; Mylonakis, E.; Hamblin, M. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Lasers Surg Med
      6. Products :
      7. Volume :
        42
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Administration, Cutaneous; Animals; Disease Models, Animal; Female; *Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; Photobleaching; *Photochemotherapy; Polyethyleneimine/administration & dosage; Porphyrins/*administration & dosage; Radiation-Sensitizing Agents/*administration & dosage; Staphylococcal Skin Infections/etiology/pathology/*therapy; Wound Infection/microbiology/pathology/*therapy
      12. Abstract :
        BACKGROUND AND OBJECTIVE: Methicillin-resistant Staphylococcus aureus (MRSA) skin infections are now known to be a common and important problem in the Unites States. The objective of this study was to investigate the efficacy of photodynamic therapy (PDT) for the treatment of MRSA infection in skin abrasion wounds using a mouse model. STUDY DESIGN/MATERIALS AND METHODS: A mouse model of skin abrasion wound infected with MRSA was developed. Bioluminescent strain of MRSA, a derivative of ATCC 33591, was used to allow the real-time monitoring of the extent of infection in mouse wounds. PDT was performed with the combination of a polyethylenimine (PEI)-ce6 photosensitizer (PS) and non-coherent red light. In vivo fluorescence imaging was carried out to evaluate the effect of photobleaching of PS during PDT. RESULTS: In vivo fluorescence imaging of conjugate PEI-ce6 applied in mice indicated the photobleaching effect of the PS during PDT. PDT induced on average 2.7 log(10) of inactivation of MRSA as judged by loss of bioluminescence in mouse skin abrasion wounds and accelerated the wound healing on average by 8.6 days in comparison to the untreated infected wounds. Photobleaching of PS in the wound was overcome by adding the PS solution in aliquots. CONCLUSION: PDT may represent an alternative approach for the treatment of MRSA skin infections.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20077489
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10553