1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

1–1 of 1 record found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Zhang, Z.; Hu, Z.; Gupta, J.; Krimmel, J. D.; Gerseny, H. M.; Berg, A. F.; Robbins, J. S.; Du, H.; Prabhakar, B.; Seth, P.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Cancer Gene Ther
      6. Products :
      7. Volume :
        19
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        4T1-luc2, IVIS, Bioluminescence, Adenoviridae/genetics/*metabolism/physiology; Administration, Intravenous; Animals; Bone Neoplasms/secondary/*therapy; Cell Line, Tumor; Female; Humans; Immunocompetence; Luminescent Measurements/methods; Mammary Neoplasms, Experimental/pathology/*therapy; Mice; Mice, Inbred BALB C; Oncolytic Virotherapy/methods; Oncolytic Viruses/genetics/metabolism/physiology; Phosphorylation; Promoter Regions, Genetic; Protein-Serine-Threonine Kinases/genetics/*metabolism; Receptors, Transforming Growth Factor beta/genetics/*metabolism; Signal Transduction; Smad2 Protein/genetics/metabolism; Telomerase/genetics; Transforming Growth Factor beta1/genetics/metabolism; Transplantation, Isogeneic/methods; Tumor Stem Cell Assay/methods; Virus Replication
      12. Abstract :
        We have examined the effect of adenoviruses expressing soluble transforming growth factor receptorII-Fc (sTGFbetaRIIFc) in a 4T1 mouse mammary tumor bone metastasis model using syngeneic BALB/c mice. Infection of 4T1 cells with a non-replicating adenovirus, Ad(E1-).sTbetaRFc, or with two oncolytic adenoviruses, Ad.sTbetaRFc and TAd.sTbetaRFc, expressing sTGFbetaRIIFc (the human TERT promoter drives viral replication in TAd.sTbetaRFc) produced sTGFbetaRIIFc protein. Oncolytic adenoviruses produced viral replication and induced cytotoxicity in 4T1 cells. 4T1 cells were resistant to the cytotoxic effects of TGFbeta-1 (up to 10 ng ml(-1)). However, TGFbeta-1 induced the phosphorylation of SMAD2 and SMAD3, which were inhibited by co-incubation with sTGFbetaRIIFc protein. TGFbeta-1 also induced interleukin-11, a well-known osteolytic factor. Intracardiac injection of 4T1-luc2 cells produced bone metastases by day 4. Intravenous injection of Ad.sTbetaRFc (on days 5 and 7) followed by bioluminescence imaging (BLI) of mice on days 7, 11 and 14 in tumor-bearing mice indicated inhibition of bone metastasis progression (P<0.05). X-ray radiography of mice on day 14 showed a significant reduction of the lesion size by Ad.sTbetaRFc (P<0.01) and TAd.sTbetaRFc (P<0.05). Replication-deficient virus Ad(E1-).sTbetaRFc expressing sTGFbetaRIIFc showed some inhibition of bone metastasis, whereas Ad(E1-).Null was not effective in inhibiting bone metastases. Thus, systemic administration of Ad.sTbetaRFc and TAd.sTbetaRFc can inhibit bone metastasis in the 4T1 mouse mammary tumor model, and can be developed as potential anti-tumor agents for breast cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22744210
      14. Call Number :
        PKI @ kd.modi @ 7
      15. Serial :
        10479
Back to Search
Select All  |  Deselect All