1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

1–1 of 1 record found matching your query:

Headers act as filters

      1. Author :
        Pello, O. M.; Chevre, R.; Laoui, D.; De Juan, A.; Lolo, F.; Andres-Manzano, M. J.; Serrano, M.; Van Ginderachter, J. A.; Andres, V.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        7
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense
      12. Abstract :
        Although tumor-associated macrophages (TAMs) are involved in tumor growth and metastasis, the mechanisms controlling their pro-tumoral activities remain largely unknown. The transcription factor c-MYC has been recently shown to regulate in vitro human macrophage polarization and be expressed in macrophages infiltrating human tumors. In this study, we exploited the predominant expression of LysM in myeloid cells to generate c-Myc(fl/fl) LysM(cre/+) mice, which lack c-Myc in macrophages, to investigate the role of macrophage c-MYC expression in cancer. Under steady-state conditions, immune system parameters in c-Myc(fl/fl) LysM(cre/+) mice appeared normal, including the abundance of different subsets of bone marrow hematopoietic stem cells, precursors and circulating cells, macrophage density, and immune organ structure. In a model of melanoma, however, TAMs lacking c-Myc displayed a delay in maturation and showed an attenuation of pro-tumoral functions (e.g., reduced expression of VEGF, MMP9, and HIF1alpha) that was associated with impaired tissue remodeling and angiogenesis and limited tumor growth in c-Myc(fl/fl) LysM(cre/+) mice. Macrophage c-Myc deletion also diminished fibrosarcoma growth. These data identify c-Myc as a positive regulator of the pro-tumoral program of TAMs and suggest c-Myc inactivation as an attractive target for anti-cancer therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23028984
      14. Call Number :
        PKI @ kd.modi @ 33
      15. Serial :
        10376