1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

1–1 of 1 record found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Adachi, T.; Kawakami, E.; Ishimaru, N.; Ochiya, T.; Hayashi, Y.; Ohuchi, H.; Tanihara, M.; Tanaka, E.; Noji, S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Dev Growth Differ
      6. Products :
      7. Volume :
        52
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc, Animals; Base Sequence; Cell Line, Tumor; Collagen/*chemistry; DNA Primers; *Gene Silencing; Mice; RNA, Small Interfering/*administration & dosage/*chemistry; Reverse Transcriptase Polymerase Chain Reaction
      12. Abstract :
        Silencing gene expression by small interfering RNAs (siRNAs) has become a powerful tool for the genetic analysis of many animals. However, the rapid degradation of siRNA and the limited duration of its action in vivo have called for an efficient delivery technology. Here, we describe that siRNA complexed with a synthetic collagen poly(Pro-Hyp-Gly) (SYCOL) is resistant to nucleases and is efficiently transferred into cells in vitro and in vivo, thereby allowing long-term gene silencing in vivo. We found that the SYCOL-mediated local application of siRNA targeting myostatin, coding a negative regulator of skeletal muscle growth, in mouse skeletal muscles, caused a marked increase in the muscle mass within a few weeks after application. Furthermore, in vivo administration of an anti-luciferase siRNA/SYCOL complex partially reduced luciferase expression in xenografted tumors in vivo. These results indicate a SYCOL-based non-viral delivery method could be a reliable simple approach to knockdown gene expression by RNAi in vivo as well as in vitro.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20874713
      14. Call Number :
        PKI @ kd.modi @ 11
      15. Serial :
        10352
Back to Search
Select All  |  Deselect All