1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

261–270 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Gillrie, Mark R; Zbytnuik, Lori; McAvoy, Erin; Kapadia, Roxna; Lee, Kristine; Waterhouse, Christopher C M; Davis, Shevaun P; Muruve, Daniel A; Kubes, Paul; Ho, May
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        European journal of immunology
      6. Products :
      7. Volume :
        40
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Chemotaxis, Leukocyte; Endothelial Cells; Enzyme-Linked Immunosorbent Assay; Humans; Interferon-gamma; Lipopolysaccharides; Mice; Mice, Inbred C57BL; Mice, Knockout; Staphylococcal Infections; Staphylococcus aureus; Teichoic Acids; Toll-Like Receptor 2; Transplantation Chimera; Xen29
      12. Abstract :
        The response of leukocytes to lipoteichoic acid (LTA), a TLR2-dependent major cell wall component of Staphylococcus aureus, is linked to the outcome of an infection. In this study we investigated the role of nonhematopoietic TLR2 in response to LTA and S. aureus by creating bone marrow chimeras. Significant leukocyte recruitment in response to LTA required IFN-gamma priming in WT C57BL/6 and TLR2(-/-)-->WT mice, but was not observed in TLR2(-/-) or WT-->TLR2(-/-) animals. LTA also induced a proinflammatory response in IFN-gamma primed primary human microvascular endothelial cells leading to leukocyte recruitment in vitro. When mice were infected with S. aureus, the most profound elevation of TNF-alpha and IL-6 was seen in TLR2(-/-) and TLR2(-/-)-->WT mice. TLR2(-/-), but not chimeric mice, demonstrated increased IL-17, blood leukocytosis and pulmonary neutrophilia compared to WT mice. Collectively, the results suggest an essential role for IFN-gamma and nonhematopoietic TLR2 for leukocyte recruitment in response to LTA. In contrast, TLR2 on both hematopoietic and nonhematopoietic cells appears to orchestrate an inhibitory response to S. aureus such that in complete TLR2 deficiency, there is an exaggerated proinflammatory response and/or skewing of the immune response towards a Th17 phenotype that may contribute to the decreased survival of TLR2(-/-) mice.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20306471
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9036
      1. Author :
        Hart, Emily; Azzopardi, Kristy; Taing, Heng; Graichen, Florian; Jeffery, Justine; Mayadunne, Roshan; Wickramaratna, Malsha; O'Shea, Mike; Nijagal, Brunda; Watkinson, Rebecca; O'Leary, Stephen; Finnin, Barrie; Tait, Russell; Robins-Browne, Roy
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        The Journal of antimicrobial chemotherapy
      6. Products :
      7. Volume :
        65
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Bioware; Colony Count, Microbial; Disease Models, Animal; Female; Foreign Bodies; Humans; Mice; Mice, Inbred BALB C; Ofloxacin; Polymers; Prosthesis-Related Infections; Staphylococcal Infections; Staphylococcus aureus; Xen29
      12. Abstract :
        OBJECTIVES To assess support discs, comprising polyethylene terephthalate (PET), coated with different polymer/levofloxacin combinations for antimicrobial activity in an animal model of infection, in order to explore the use of specific polymer coatings incorporating levofloxacin as a means of reducing device-related infections. METHODS Aliphatic polyester-polyurethanes containing different ratios of poly(lactic acid) diol and poly(caprolactone) diol were prepared, blended with levofloxacin and then used to coat support discs. The in vitro levofloxacin release profiles from these discs were measured in aqueous solution. Mice were surgically implanted with the coated discs placed subcutaneously and infection was initiated by injection of 10(6) cfu of Staphylococcus aureus into the subcutaneous pocket containing the implant. After 5, 10, 20 and 30 days, the discs were removed, and the number of bacteria adhering to the implant and the residual antimicrobial activity of the discs were determined. RESULTS In vitro, the release of levofloxacin from the coated discs occurred at a constant rate and then reached a plateau at different timepoints, depending on the polymer preparation used. In vivo, none of the discs coated with polymer blends containing levofloxacin was colonized by S. aureus, whereas 94% of the discs coated with polymer alone were infected. All discs coated with levofloxacin-blended polymers displayed residual antimicrobial activity for at least 20 days post-implantation. CONCLUSIONS Bioerodable polyester-polyurethane polymer coatings containing levofloxacin can prevent bacterial colonization of implants in an intra-operative model of device-related infections.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20233779
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9035
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Annals of the New York Academy of Sciences
      6. Products :
      7. Volume :
        1192
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Biofilms; Bioware; Bone Density Conservation Agents; Chronic Disease; Cytokines; Drug Evaluation, Preclinical; Humans; Immunity; Incidence; Jaw Diseases; Mice; Neovascularization, Physiologic; Osteoclasts; Osteomyelitis; Osteonecrosis; Staphylococcal Infections; Xen29
      12. Abstract :
        The effects of antiresorptive agents (e.g., alendronate [Aln], osteoprotegerin [OPG]) on bone infection are unknown. Thus, their effects on implant-associated osteomyelitis (OM) were investigated in mice using PBS (placebo), gentamycin, and etanercept (TNFR:Fc) controls. None of the drugs affected humoral immunity, angiogenesis, or chronic infection. However, the significant (P < 0.05 vs. PBS) inhibition of cortical osteolysis and decreased draining lymph node size in Aln- and OPG-treated mice was associated with a significant (P < 0.05) increase in the incidence of high-grade infections during the establishment of OM. In contrast, the high-grade infections in TNFR:Fc-treated mice were associated with immunosuppression, as evidenced by the absence of granulomas and presence of Gram(+) biofilm in the bone marrow. Collectively, these findings indicate that although antiresorptive agents do not exacerbate chronic OM, they can increase the bacterial load during early infection by decreasing lymphatic drainage and preventing the removal of necrotic bone that harbors the bacteria.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20392222
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9034
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Journal of immunology (Baltimore, Md.: 1950)
      6. Products :
      7. Volume :
        184
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Amino Acid Sequence; Animals; Antimicrobial Cationic Peptides; Bacterial Infections; Bioware; Cell Line; Cells, Cultured; Chemokine CCL2; Chemokine CCL7; Chemokine CXCL1; Chemokines; Female; Humans; Interleukin-8; Leukocytes; Leukocytes, Mononuclear; Macrophages; Mice; Mice, Inbred C57BL; Molecular Sequence Data; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Phosphorylation; Staphylococcal Infections; Staphylococcus aureus; Xen29, Xen14
      12. Abstract :
        With the rapid rise in the incidence of multidrug resistant infections, there is substantial interest in host defense peptides as templates for production of new antimicrobial therapeutics. Natural peptides are multifunctional mediators of the innate immune response, with some direct antimicrobial activity and diverse immunomodulatory properties. We have previously developed an innate defense regulator (IDR) 1, with protective activity against bacterial infection mediated entirely through its effects on the immunity of the host, as a novel approach to anti-infective therapy. In this study, an immunomodulatory peptide IDR-1002 was selected from a library of bactenecin derivatives based on its substantially more potent ability to induce chemokines in human PBMCs. The enhanced chemokine induction activity of the peptide in vitro correlated with stronger protective activity in vivo in the Staphylococcus aureus-invasive infection model, with a >5-fold reduction in the protective dose in direct comparison with IDR-1. IDR-1002 also afforded protection against the Gram-negative bacterial pathogen Escherichia coli. Chemokine induction by IDR-1002 was found to be mediated through a Gi-coupled receptor and the PI3K, NF-kappaB, and MAPK signaling pathways. The protective activity of the peptide was associated with in vivo augmentation of chemokine production and recruitment of neutrophils and monocytes to the site of infection. These results highlight the importance of the chemokine induction activity of host defense peptides and demonstrate that the optimization of the ex vivo chemokine-induction properties of peptides is a promising method for the rational development of immunomodulatory IDR peptides with enhanced anti-infective activity.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20107187
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9033
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Acta biomaterialia
      6. Products :
      7. Volume :
        6
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bacterial Adhesion; Biocompatible Materials; Biofilms; Bioware; Coated Materials, Biocompatible; Materials Testing; Polyethylene Glycols; Staphylococcus aureus; Staphylococcus epidermidis; Surface Properties; Xen29
      12. Abstract :
        Poly(ethylene glycol) (PEG) coatings are known to reduce microbial adhesion in terms of numbers and binding strength. However, bacterial adhesion remains of the order of 10(4)cm(-2). It is unknown whether this density of bacteria will eventually grow into a biofilm. This study investigates the kinetics of staphylococcal biofilm formation on a commercially produced, robust, cross-linked PEG-based polymer coating (OptiChem) in vitro and in vivo. OptiChem inhibits biofilm formation in vitro, and although adsorption of plasma proteins encourages biofilm formation, microbial growth kinetics are still strongly delayed compared to uncoated glass. In vivo, OptiChem-coated and bare silicone rubber samples were inserted into an infected murine subcutaneous pocket model. In contrast to bare silicone rubber, OptiChem samples did not become colonized upon reimplantation despite the fact that surrounding tissues were always culture-positive. We conclude that the commercial OptiChem coating considerably slows down bacterial biofilm formation both in vitro and in vivo, making it an attractive candidate for biomaterials implant coating.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19733265
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9041
      1. Author :
        Sjollema, Jelmer; Sharma, Prashant K; Dijkstra, Rene J B; van Dam, Gooitzen M; van der Mei, Henny C; Engelsman, Anton F; Busscher, Henk J
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Biomaterials
      6. Products :
      7. Volume :
        31
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Infective Agents; Bacteria; Bacterial Infections; Biocompatible Materials; Biofilms; Bioware; Coated Materials, Biocompatible; Fluorescent Dyes; Humans; Image Enhancement; Light; Luminescent Measurements; Luminescent Proteins; Microscopy, Fluorescence; Prosthesis-Related Infections; Sensitivity and Specificity; Xen29
      12. Abstract :
        This review presents the current state of Bioluminescence and Fluorescent Imaging technologies (BLI and FLI) as applied to Biomaterial-Associated Infections (BAI). BLI offers the opportunity to observe the in vivo course of BAI in small animals without the need to sacrifice animals at different time points after the onset of infection. BLI is highly dependent on the bacterial cell metabolism which makes BLI a strong reporter of viable bacterial presence. Fluorescent sources are generally more stable than bioluminescent ones and specifically targeted, which renders the combination of BLI and FLI a promising tool for imaging BAI. The sensitivity and spatial resolution of both imaging tools are, however, dependent on the imaging system used and the tissue characteristics, which makes the interpretation of images, in terms of the location and shape of the illuminating source, difficult. Tomographic reconstruction of the luminescent source is possible in the most modern instruments, enabling exact localization of a colonized implant material, spreading of infecting organisms in surrounding tissue and immunological tissue reactions. BLI studies on BAI have successfully distinguished between different biomaterials with respect to the development and clearance of BAI in vivo, simultaneously reducing animal use and experimental variation. It is anticipated that bio-optical imaging will become an indispensable technology for the in vivo evaluation of antimicrobial coatings.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19969345
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9038
      1. Author :
        Sottnik, J. L.; U, L. W.'Ren; Thamm, D. H.; Withrow, S. J.; Dow, S. W.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer Immunol Immunother
      6. Products :
      7. Volume :
        59
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals, Chronic Disease, Disease Models, Animal, Immunity, Innate, Killer Cells, Natural/immunology, Macrophages/immunology, Mice, Mice, Inbred C3H, Mice, Inbred Strains, Monocytes/immunology, Neoplasms, Neovascularization, Pathologic, Osteomyelitis/*complications, Osteosarcoma/*complications/*immunology/pathology, Staphylococcal Infections/*complications IVIS, Xenogen, Xen36
      12. Abstract :
        Clinical studies over the past several years have reported that metastasis-free survival times in humans and dogs with osteosarcoma are significantly increased in patients that develop chronic bacterial osteomyelitis at their surgical site. However, the immunological mechanism by which osteomyelitis may suppress tumor growth has not been investigated. Therefore, we used a mouse model of osteomyelitis to assess the effects of bone infection on innate immunity and tumor growth. A chronic Staphylococcal osteomyelitis model was established in C3H mice and the effects of infection on tumor growth of syngeneic DLM8 osteosarcoma were assessed. The effects of infection on tumor angiogenesis and innate immunity, including NK cell and monocyte responses, were assessed. We found that osteomyelitis significantly inhibited the growth of tumors in mice, and that the effect was independent of the infecting bacterial type, tumor type, or mouse strain. Depletion of NK cells or monocytes reversed the antitumor activity elicited by infection. Moreover, infected mice had a significant increase in circulating monocytes and numbers of tumor associated macrophages. Infection suppressed tumor angiogenesis but did not affect the numbers of circulating endothelial cells. Therefore, we concluded that chronic localized bacterial infection could elicit significant systemic antitumor activity dependent on NK cells and macrophages.
      13. URL :
        http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19701748
      14. Call Number :
        143227
      15. Serial :
        5718
      1. Author :
        Ketonis, Constantinos; Barr, Stephanie; Adams, Christopher S; Hickok, Noreen J; Parvizi, Javad
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Clinical orthopaedics and related research
      6. Products :
      7. Volume :
        468
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Anti-Bacterial Agents; Biofilms; Bioware; Bone Substitutes; Bone Transplantation; Prostheses and Implants; Prosthesis-Related Infections; Staphylococcal Infections; Staphylococcus aureus; Transplantation, Homologous; Vancomycin; Xen36
      12. Abstract :
        BACKGROUND Bone grafts are frequently used to supplement bone stock and to establish structural stability. However, graft-associated infection represents a challenging complication leading to increased patient morbidity and healthcare costs. QUESTIONS/PURPOSES We therefore designed this study to (1) determine if increasing initial S. aureus inoculation of bone allograft results in a proportionate increase in colonization; (2) assess if antibiotics decrease colonization and if antibiotic tethering to allograft alters its ability to prevent bacterial colonization; and (3) determine if covalent modification alters the allograft topography or its biological properties. METHODS Allograft bone and vancomycin-modified bone (VAN-bone) was challenged with different doses of S. aureus for times out to 24 hours in the presence or absence of solution vancomycin. Bacterial colonization was assessed by fluorescence, scanning electron microscopy (SEM), and by direct colony counting. Cell density and distribution of osteoblast-like cells on control and modified allograft were then compared. RESULTS Bacterial attachment was apparent within 6 hours with colonization and biofilm formation increasing with time and dose. Solution vancomycin failed to prevent bacterial attachment whereas VAN-bone successfully resisted colonization. The allograft modification did not affect the attachment and distribution of osteoblast-like cells. CONCLUSIONS Allograft bone was readily colonized by S. aureus and covered by a biofilm with especially florid growth in natural topographic niches. Using a novel covalent modification, allograft bone was able to resist colonization by organisms while retaining the ability to allow adhesion of osteoblastic cells. CLINICAL RELEVANCE Generation of allograft bone that can resist infection in vivo would be important in addressing one of the most challenging problems associated with the use of allograft, namely infection.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20361282
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9981
      1. Author :
        Sottnik, Joseph L; U'Ren, Lance W; Thamm, Douglas H; Withrow, Stephen J; Dow, Steven W
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer immunology, immunotherapy: CII
      6. Products :
      7. Volume :
        59
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Chronic Disease; Disease Models, Animal; Immunity, Innate; Killer Cells, Natural; Macrophages; Mice; Mice, Inbred C3H; Mice, Inbred Strains; Monocytes; Neoplasms; Neovascularization, Pathologic; Osteomyelitis; Osteosarcoma; Staphylococcal Infections; Xen36
      12. Abstract :
        Clinical studies over the past several years have reported that metastasis-free survival times in humans and dogs with osteosarcoma are significantly increased in patients that develop chronic bacterial osteomyelitis at their surgical site. However, the immunological mechanism by which osteomyelitis may suppress tumor growth has not been investigated. Therefore, we used a mouse model of osteomyelitis to assess the effects of bone infection on innate immunity and tumor growth. A chronic Staphylococcal osteomyelitis model was established in C3H mice and the effects of infection on tumor growth of syngeneic DLM8 osteosarcoma were assessed. The effects of infection on tumor angiogenesis and innate immunity, including NK cell and monocyte responses, were assessed. We found that osteomyelitis significantly inhibited the growth of tumors in mice, and that the effect was independent of the infecting bacterial type, tumor type, or mouse strain. Depletion of NK cells or monocytes reversed the antitumor activity elicited by infection. Moreover, infected mice had a significant increase in circulating monocytes and numbers of tumor associated macrophages. Infection suppressed tumor angiogenesis but did not affect the numbers of circulating endothelial cells. Therefore, we concluded that chronic localized bacterial infection could elicit significant systemic antitumor activity dependent on NK cells and macrophages.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19701748
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9980
Back to Search
Select All  |  Deselect All