1. Resources
  2. Citations Library

Headers act as filters

  • Records
      1. Author :
        Dai, T.; Tegos, G. P.; Zhiyentayev, T.; Mylonakis, E.; Hamblin, M. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Lasers Surg Med
      6. Products :
      7. Volume :
        42
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Administration, Cutaneous; Animals; Disease Models, Animal; Female; *Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; Photobleaching; *Photochemotherapy; Polyethyleneimine/administration & dosage; Porphyrins/*administration & dosage; Radiation-Sensitizing Agents/*administration & dosage; Staphylococcal Skin Infections/etiology/pathology/*therapy; Wound Infection/microbiology/pathology/*therapy
      12. Abstract :
        BACKGROUND AND OBJECTIVE: Methicillin-resistant Staphylococcus aureus (MRSA) skin infections are now known to be a common and important problem in the Unites States. The objective of this study was to investigate the efficacy of photodynamic therapy (PDT) for the treatment of MRSA infection in skin abrasion wounds using a mouse model. STUDY DESIGN/MATERIALS AND METHODS: A mouse model of skin abrasion wound infected with MRSA was developed. Bioluminescent strain of MRSA, a derivative of ATCC 33591, was used to allow the real-time monitoring of the extent of infection in mouse wounds. PDT was performed with the combination of a polyethylenimine (PEI)-ce6 photosensitizer (PS) and non-coherent red light. In vivo fluorescence imaging was carried out to evaluate the effect of photobleaching of PS during PDT. RESULTS: In vivo fluorescence imaging of conjugate PEI-ce6 applied in mice indicated the photobleaching effect of the PS during PDT. PDT induced on average 2.7 log(10) of inactivation of MRSA as judged by loss of bioluminescence in mouse skin abrasion wounds and accelerated the wound healing on average by 8.6 days in comparison to the untreated infected wounds. Photobleaching of PS in the wound was overcome by adding the PS solution in aliquots. CONCLUSION: PDT may represent an alternative approach for the treatment of MRSA skin infections.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20077489
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10553
      1. Author :
        Ragas, X.; Sanchez-Garcia, D.; Ruiz-Gonzalez, R.; Dai, T.; Agut, M.; Hamblin, M. R.; Nonell, S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        J Med Chem
      6. Products :
      7. Volume :
        53
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Animals; Bacterial Infections/*drug therapy; Burns/drug therapy/microbiology; Candida/drug effects; Cations; Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects; Male; Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; *Photochemotherapy; Photosensitizing Agents/*chemical synthesis/chemistry/pharmacology; Porphyrins/*chemical synthesis/chemistry/pharmacology; Solubility; Staphylococcal Infections/drug therapy/microbiology; Structure-Activity Relationship
      12. Abstract :
        Structures of typical photosensitizers used in antimicrobial photodynamic therapy are based on porphyrins, phthalocyanines, and phenothiazinium salts, with cationic charges at physiological pH values. However, derivatives of the porphycene macrocycle (a structural isomer of porphyrin) have barely been investigated as antimicrobial agents. Therefore, we report the synthesis of the first tricationic water-soluble porphycene and its basic photochemical properties. We successfully tested it for in vitro photoinactivation of different Gram-positive and Gram-negative bacteria, as well as a fungal species (Candida) in a drug-dose and light-dose dependent manner. We also used the cationic porphycene in vivo to treat an infection model comprising mouse third degree burns infected with a bioluminescent methicillin-resistant Staphylococcus aureus strain. There was a 2.6-log(10) reduction (p < 0.001) of the bacterial bioluminescence for the PDT-treated group after irradiation with 180 J.cm(-2) of red light.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20936792
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10555
      1. Author :
        Ragas, X.; Sanchez-Garcia, D.; Ruiz-Gonzalez, R.; Dai, T.; Agut, M.; Hamblin, M. R.; Nonell, S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        J Med Chem
      6. Products :
      7. Volume :
        53
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Animals; Bacterial Infections/*drug therapy; Burns/drug therapy/microbiology; Candida/drug effects; Cations; Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects; Male; Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; *Photochemotherapy; Photosensitizing Agents/*chemical synthesis/chemistry/pharmacology; Porphyrins/*chemical synthesis/chemistry/pharmacology; Solubility; Staphylococcal Infections/drug therapy/microbiology; Structure-Activity Relationship
      12. Abstract :
        Structures of typical photosensitizers used in antimicrobial photodynamic therapy are based on porphyrins, phthalocyanines, and phenothiazinium salts, with cationic charges at physiological pH values. However, derivatives of the porphycene macrocycle (a structural isomer of porphyrin) have barely been investigated as antimicrobial agents. Therefore, we report the synthesis of the first tricationic water-soluble porphycene and its basic photochemical properties. We successfully tested it for in vitro photoinactivation of different Gram-positive and Gram-negative bacteria, as well as a fungal species (Candida) in a drug-dose and light-dose dependent manner. We also used the cationic porphycene in vivo to treat an infection model comprising mouse third degree burns infected with a bioluminescent methicillin-resistant Staphylococcus aureus strain. There was a 2.6-log(10) reduction (p < 0.001) of the bacterial bioluminescence for the PDT-treated group after irradiation with 180 J.cm(-2) of red light.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20936792
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10556
      1. Author :
        Nguyen, V. H.; Kim, H. S.; Ha, J. M.; Hong, Y.; Choy, H. E.; Min, J. J.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer Res
      6. Products :
      7. Volume :
        70
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen26, Xen 26, Salmonella typhumurium, Animals; Blotting, Western; Cell Line, Tumor; Diagnostic Imaging/methods; Gene Therapy/*methods; Genetic Engineering/*methods; Genetic Vectors/*therapeutic use; Humans; Male; Mice; Mice, Inbred BALB C; Neoplasms/*therapy; Perforin/*genetics/therapeutic use; Promoter Regions, Genetic; Salmonella typhimurium/*genetics; bcl-Associated Death Protein/genetics
      12. Abstract :
        Tumor-targeting bacteria have been studied in terms of their ability to visualize the infection pathway (through imaging probes) or to carry therapeutic molecules to tumors. To integrate these monitoring and therapeutic functions, we engineered attenuated Salmonella typhimurium defective in guanosine 5'-diphosphate-3'-diphosphate synthesis to carry cytotoxic proteins (cytolysin A) and express reporter genes. We successfully visualized the therapeutic process with these engineered bacteria in mice and found that they often mediated complete tumor (CT-26) eradication on cytotoxic gene induction. Furthermore, treatment with the engineered bacteria markedly suppressed metastatic tumor growth.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20028866
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10560
      1. Author :
        Lu, Z.; Dai, T.; Huang, L.; Kurup, D. B.; Tegos, G. P.; Jahnke, A.; Wharton, T.; Hamblin, M. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Nanomedicine (Lond)
      6. Products :
      7. Volume :
        5
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen44, Xen 44, Proteus mirabilis, bioluminescence imaging, Animals; Fullerenes/*chemistry; Male; Mice; Mice, Inbred BALB C; Photochemotherapy/*methods; Photosensitizing Agents/*chemistry; Pseudomonas Infections/*drug therapy; Pseudomonas aeruginosa/drug effects; Wound Infection/*drug therapy
      12. Abstract :
        AIMS: Fullerenes are under intensive study for potential biomedical applications. We have previously reported that a C60 fullerene functionalized with three dimethylpyrrolidinium groups (BF6) is a highly active broad-spectrum antimicrobial photosensitizer in vitro when combined with white-light illumination. We asked whether this high degree of in vitro activity would translate into an in vivo therapeutic effect in two potentially lethal mouse models of infected wounds. MATERIALS & METHODS: We used stable bioluminescent bacteria and a low light imaging system to follow the progress of the infection noninvasively in real time. An excisional wound on the mouse back was contaminated with one of two bioluminescent Gram-negative species, Proteus mirabilis (2.5 x 10(7) cells) and Pseudomonas aeruginosa (5 x 10(6) cells). A solution of BF6 was placed into the wound followed by delivery of up to 180 J/cm(2) of broadband white light (400-700 nm). RESULTS: In both cases there was a light-dose-dependent reduction of bioluminescence from the wound not observed in control groups (light alone or BF6 alone). Fullerene-mediated photodynamic therapy of mice infected with P. mirabilis led to 82% survival compared with 8% survival without treatment (p < 0.001). Photodynamic therapy of mice infected with highly virulent P. aeruginosa did not lead to survival, but when photodynamic therapy was combined with a suboptimal dose of the antibiotic tobramycin (6 mg/kg for 1 day) there was a synergistic therapeutic effect with a survival of 60% compared with a survival of 20% with tobramycin alone (p < 0.01). CONCLUSION: These data suggest that cationic fullerenes have clinical potential as an antimicrobial photosensitizer for superficial infections where red light is not needed to penetrate tissue.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21143031
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10563
      1. Author :
        Evans, L.; Williams, A.S.; Hayes, A.J.; Jones, S.A.; Nowell, M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Arthritis and Rheumatism
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Apo866; Arthritis; In vivo; Living Image software; MMPSense 750 FAST; Xenogen Caliper IVIS 200
      12. Abstract :
        OBJECTIVE: Using APO866, studies assessed the ability of Pre-B-cell colony-Enhancing Factor (PBEF) to regulate inflammatory and degradative processes in fibroblasts and collagen-induced arthritis. METHODS: ELISAs were used to examine regulation of metalloproteinases and chemokine expression by HFF fibroblasts. PBEF was further examined in the collagen-induced arthritis model using APO866. Disease activity was assessed using radiography, histology, in vivo imaging and quantitative PCR (qPCR). RESULTS: In vitro activation of fibroblasts with PBEF promoted MMP-3, CCL-2 and CXCL-8 expression, an effect inhibited by APO866. Early intervention with APO866 in collagen-induced arthritis inhibited both synovial inflammation, including chemokine-directed leukocyte infiltration, and the systemic marker of inflammation, serum hyaluronic acid. Blockade of degenerative processes by APO866 was further illustrated by the reduced expression of MMP-3 and MMP-13 in joint extracts and reduction of the systemic marker of cartilage erosion, serum cartilage oligomeric matrix protein (COMP). Radiology showed that APO866 protected against bone erosion, whilst qPCR demonstrated inhibition of RANKL expression. APO866 treatment in established disease (clinical score >=5) reduced synovial inflammation, cartilage destruction and halted bone erosion. MMP-3, CCL-2 and RANKL activity, as assessed by in vivo imaging with MMPSense750 and qPCR were reduced in treated animals. qPCR of synovial explants from animals with CIA showed that APO866 inhibited MMP-3, CCL-2 and RANKL production, a result that was reversed with nicotinamide mononucleotide (NMN) CONCLUSIONS: These data confirm PBEF to be an important regulator of inflammation, cartilage catabolism and bone erosion, and highlights APO866 as a promising therapy for targeting PBEF activity in inflammatory arthritis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21400478
      14. Call Number :
        PKI @ user @ 8551
      15. Serial :
        4800
      1. Author :
        Mathew, B.; Lennon, F.E.; Siegler, J.; Mirzapoiazova, T.; Mambetsariev, N.; Sammani, S.; Gerhold, L.M.; Lariviere, P.J.; Chen, C.-T.; Garcia, J.G.N.; Salgia, R.; Moss, J.; Singleton, P.A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Anesthesia and Analgesia
      6. Products :
      7. Volume :
        112
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Cancer; flank tumor; In vivo; MMPSense 750; ProSense 680; tomography; VisEn FMT
      12. Abstract :
        <AbstractText Label=“BACKGROUND” NlmCategory=“BACKGROUND”>The possibility that μ opioid agonists can influence cancer recurrence is a subject of recent interest. Epidemiologic studies suggested that there were differences in cancer recurrence in breast and prostate cancer contingent on anesthetic regimens. In this study, we identify a possible mechanism for these epidemiologic findings on the basis of μ opioid receptor (MOR) regulation of Lewis lung carcinoma (LLC) tumorigenicity in cell and animal models.</AbstractText> <AbstractText Label=“METHODS” NlmCategory=“METHODS”>We used human lung tissue and human non-small cell lung cancer (NSCLC) cell lines and evaluated MOR expression using immunoblot and immunohistochemical analysis. LLC cells were treated with the peripheral opioid antagonist methylnaltrexone (MNTX) or MOR shRNA and evaluated for proliferation, invasion, and soft agar colony formation in vitro and primary tumor growth and lung metastasis in C57BL/6 and MOR knockout mice using VisEn fluorescence mediated tomography imaging and immunohistochemical analysis.</AbstractText> <AbstractText Label=“RESULTS” NlmCategory=“RESULTS”>We provide several lines of evidence that the MOR may be a potential target for lung cancer, a disease with high mortality and few treatment options. We first observed that there is ~5- to 10-fold increase in MOR expression in lung samples from patients with NSCLC and in several human NSCLC cell lines. The MOR agonists morphine and [d-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) increased in vitro LLC cell growth. Treatment with MNTX or silencing MOR expression inhibited LLC invasion and anchorage-independent growth by 50%-80%. Injection of MOR silenced LLC lead to a ~65% reduction in mouse lung metastasis. In addition, MOR knockout mice do not develop significant tumors when injected with LLC in comparison with wild-type controls. Finally, continuous infusion of the peripheral opioid antagonist MNTX attenuates primary LLC tumor growth and reduces lung metastasis.</AbstractText> <AbstractText Label=“CONCLUSIONS” NlmCategory=“CONCLUSIONS”>Taken together, our data suggest a possible direct effect of opiates on lung cancer progression, and provide a plausible explanation for the epidemiologic findings. Our observations further suggest a possible therapeutic role for opioid antagonists.</AbstractText>
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21156980
      14. Call Number :
        PKI @ user @ 8557
      15. Serial :
        4797