1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

291–300 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Nguyen, V. H.; Kim, H. S.; Ha, J. M.; Hong, Y.; Choy, H. E.; Min, J. J.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer Res
      6. Products :
      7. Volume :
        70
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen26, Xen 26, Salmonella typhumurium, Animals; Blotting, Western; Cell Line, Tumor; Diagnostic Imaging/methods; Gene Therapy/*methods; Genetic Engineering/*methods; Genetic Vectors/*therapeutic use; Humans; Male; Mice; Mice, Inbred BALB C; Neoplasms/*therapy; Perforin/*genetics/therapeutic use; Promoter Regions, Genetic; Salmonella typhimurium/*genetics; bcl-Associated Death Protein/genetics
      12. Abstract :
        Tumor-targeting bacteria have been studied in terms of their ability to visualize the infection pathway (through imaging probes) or to carry therapeutic molecules to tumors. To integrate these monitoring and therapeutic functions, we engineered attenuated Salmonella typhimurium defective in guanosine 5'-diphosphate-3'-diphosphate synthesis to carry cytotoxic proteins (cytolysin A) and express reporter genes. We successfully visualized the therapeutic process with these engineered bacteria in mice and found that they often mediated complete tumor (CT-26) eradication on cytotoxic gene induction. Furthermore, treatment with the engineered bacteria markedly suppressed metastatic tumor growth.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20028866
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10560
      1. Author :
        Lu, Z.; Dai, T.; Huang, L.; Kurup, D. B.; Tegos, G. P.; Jahnke, A.; Wharton, T.; Hamblin, M. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Nanomedicine (Lond)
      6. Products :
      7. Volume :
        5
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen44, Xen 44, Proteus mirabilis, bioluminescence imaging, Animals; Fullerenes/*chemistry; Male; Mice; Mice, Inbred BALB C; Photochemotherapy/*methods; Photosensitizing Agents/*chemistry; Pseudomonas Infections/*drug therapy; Pseudomonas aeruginosa/drug effects; Wound Infection/*drug therapy
      12. Abstract :
        AIMS: Fullerenes are under intensive study for potential biomedical applications. We have previously reported that a C60 fullerene functionalized with three dimethylpyrrolidinium groups (BF6) is a highly active broad-spectrum antimicrobial photosensitizer in vitro when combined with white-light illumination. We asked whether this high degree of in vitro activity would translate into an in vivo therapeutic effect in two potentially lethal mouse models of infected wounds. MATERIALS & METHODS: We used stable bioluminescent bacteria and a low light imaging system to follow the progress of the infection noninvasively in real time. An excisional wound on the mouse back was contaminated with one of two bioluminescent Gram-negative species, Proteus mirabilis (2.5 x 10(7) cells) and Pseudomonas aeruginosa (5 x 10(6) cells). A solution of BF6 was placed into the wound followed by delivery of up to 180 J/cm(2) of broadband white light (400-700 nm). RESULTS: In both cases there was a light-dose-dependent reduction of bioluminescence from the wound not observed in control groups (light alone or BF6 alone). Fullerene-mediated photodynamic therapy of mice infected with P. mirabilis led to 82% survival compared with 8% survival without treatment (p < 0.001). Photodynamic therapy of mice infected with highly virulent P. aeruginosa did not lead to survival, but when photodynamic therapy was combined with a suboptimal dose of the antibiotic tobramycin (6 mg/kg for 1 day) there was a synergistic therapeutic effect with a survival of 60% compared with a survival of 20% with tobramycin alone (p < 0.01). CONCLUSION: These data suggest that cationic fullerenes have clinical potential as an antimicrobial photosensitizer for superficial infections where red light is not needed to penetrate tissue.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21143031
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10563
      1. Author :
        Houari Korideck; Jeffrey D. Peterson
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Journal of Pharmacology and Experimental Therapeutics
      6. Products :
      7. Volume :
        329
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research; Biology
      11. Keywords :
        in vivo imaging; therapeutics; asthma; pulmonary diseases; noninvasive; infrared imaging; fluorescence molecular tomography; FMT; Fluorescence Imaging Agents
      12. Abstract :
        Animal models of pulmonary inflammation are critical for understanding the pathophysiology of asthma and for developing new therapies. Current conventional assessments in mouse models of asthma and chronic obstructive pulmonary disease rely on invasive measures of pulmonary function and terminal characterization of cells infiltrating into the lung. The ability to noninvasively visualize and quantify the underlying biological processes in mouse pulmonary models in vivo would provide a significant advance in characterizing disease processes and the effects of therapeutics. We report the utility of near-infrared imaging agents, in combination with fluorescence molecular tomography (FMT) imaging, for the noninvasive quantitative imaging of mouse lung inflammation in an ovalbumin (OVA)-induced chronic asthma model. BALB/c mice were intraperitoneally sensitized with OVA-Alum (aluminum hydroxide) at days 0 and 14, followed by daily intranasal challenge with OVA in phosphate-buffered saline from days 21 to 24. Dexamethasone and control therapies were given intraperitoneally 4 h before each intranasal inhalation of OVA from days 21 to 24. Twenty-four hours before imaging, the mice were injected intravenously with 5 nmol of the cathepsin-activatable fluorescent agent, ProSense 680. Quantification by FMT revealed in vivo cysteine protease activity within the lung associated with the inflammatory eosinophilia, which decreased in response to dexamethasone treatment. Results were correlated with in vitro laboratory tests (bronchoalveolar lavage cell analysis and immunohistochemistry) and revealed good correlation between these measures and quantification of ProSense 680 activation. We have demonstrated the ability of FMT to noninvasively visualize and quantify inflammation in the lung and monitor therapeutic efficacy in vivo.
      13. URL :
        http://jpet.aspetjournals.org/content/329/3/882.full
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4473
      1. Author :
        Qingbei Zhang; Meng Yang; Jikun Shen; Lynnette M. Geerhold; Robert M Hoffman; H. Rosie Xing
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        International Journal of Cancer
      6. Products :
      7. Volume :
        126
      8. Issue :
        11
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        metastasis; hemotogenous spread; prostate cancer; GFP; in vivo imaging
      12. Abstract :
        Metastasis is primarily responsible for the morbidity and mortality of cancer. Improved therapeutic outcomes and prognosis depend on improved understanding of mechanisms regulating the establishment of early metastasis. In this study, use of green fluorescent protein (GFP)-expressing PC-3 orthotopic model of human prostate cancer and two complementary fluorescence in vivo imaging systems (Olympus OV100 and VisEn FMT) allowed for the first time real-time characterization of cancer cell-endothelium interactions during spontaneous metastatic colonization of the liver and lung in live mice. We observed that prior to the detection of extra-vascular metastases, GFP-expressing PC-3 cancer cells resided initially inside the blood vessels of the liver and the lung, where they proliferated and expressed Ki-67 and exhibited matrix metalloprotenases (MMP) activity. Thus, the intravascular cancer cells produced their own microenvironment, where they could continue to proliferate. Extravasation occurred earlier in the lung than in the liver. Our results demonstrate that the intravascular microenvironment is a critical staging area for the development of metastasis that later can invade the parenchyma. Intravascular tumor cells may represent a therapeutic target to inhibit the development of extravascular metastases. Therefore, this imageable model of intravascular metastasis may be used for evaluation of novel anti-metastatic agents.
      13. URL :
        http://onlinelibrary.wiley.com/doi/10.1002/ijc.24979/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4493
      1. Author :
        John Baeten; Jodi Haller; Helen Shih; Vasilis Ntziachristos
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Neoplasia
      6. Products :
      7. Volume :
        11
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        in vivo imaging; optical imaging; breast cancer; molecular imaging
      12. Abstract :
        Optical imaging of breast cancer has been considered for detecting functional and molecular characteristics of diseases in clinical and preclinical settings. Applied to laboratory research, photonic investigations offer a highly versatile tool for preclinical imaging and drug discovery. A particular advantage of the optical method is the availability of multiple spectral bands for performing imaging. Herein, we capitalize on this feature to demonstrate how it is possible to use different wavelengths to offer internal controls and significantly improve the observation accuracy in molecular imaging applications. In particular, we show the independent in vivo detection of cysteine proteases along with tumor permeability and interstitial volume measurements using a dual-wavelength approach. To generate results with a view toward clinically geared studies, a transgenic Her2/neu mouse model that spontaneously developed mammary tumors was used. In vivo findings were validated against conventional ex vivo tests such as histology and Western blot analyses. By correcting for biodistribution parameters, the dual-wavelength method increases the accuracy of molecular observations by separating true molecular target from probe biodistribution. As such, the method is highly appropriate for molecular imaging studies where often probe delivery and target presence are not independently assessed. On the basis of these findings, we propose the dual-wavelength/normalization approach as an essential method for drug discovery and preclinical imaging studies.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2647724/
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4494
      1. Author :
        Aki Hanyu; Kiyotsugu Kojima; Kiyohiko Hatake; Kimie Nomura; Hironori Murayama; Yuichi Ishikawa; Satoshi Miyata; Masaru Ushijima; Masaaki Matsuura; Etsuro Ogata; Keiji Miyazawa;Takeshi Imamura
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Cancer Science
      6. Products :
      7. Volume :
        100
      8. Issue :
        11
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Angiogenesis; metastasis; in vivo imaging; fluorescence imaging
      12. Abstract :
        Angiogenesis plays a crucial role in cancer progression and metastasis. Thus, blocking tumor angiogenesis is potentially a universal approach to prevent tumor establishment and metastasis. In this study, we used in vivo and ex vivo fluorescence imaging to show that an antihuman vascular endothelial growth factor (VEGF) antibody represses angiogenesis and the growth of primary tumors of human fibrosarcoma HT1080 cells in implanted nude mice. Interestingly, administering the antihuman VEGF antibody reduced the development of new blood vessels and normalized pre-existing tumor vasculature in HT1080 cell tumors. In addition, antihuman VEGF antibody treatment decreased lung metastasis from the primary tumor, whereas it failed to block lung metastasis in a lung colonization experiment in which tumor cells were injected into the tail vein. These results suggest that VEGF produced by primary HT1080 cell tumors has a crucial effect on lung metastasis. The present study indicates that the in vivo fluorescent microscopy system will be useful to investigate the biology of angiogenesis and test the effectiveness of angiogenesis inhibitors.
      13. URL :
        http://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.2009.01305.x/full
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4495
      1. Author :
        Rahul Anil Sheth; Rabi Upadhyay; Lars Stangenberg; Rucha Sheth; Ralph Weissleder; Umar Mahmood
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Gynecologic Oncology
      6. Products :
      7. Volume :
        112
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Ovarian cancer; Molecular imaging; Intraoperative imaging; Fluorescence imaging
      12. Abstract :
        OBJECTIVES: Cytoreductive surgery is a cornerstone of therapy in metastatic ovarian cancer. While conventional white light (WL) inspection detects many obvious tumor foci, careful histologic comparison has shown considerable miss rates for smaller foci. The goal of this study was to compare tumor detection using WL versus near infrared (NIR) imaging with a protease activatable probe, as well as to evaluate the ability to quantify NIR fluorescence using a novel quantitative optical imaging system.

        METHODS: A murine model for peritoneal carcinomatosis was generated and metastatic foci were imaged using WL and NIR imaging following the i.v. administration of the protease activatable probe ProSense750. The presence of tumor was confirmed by histology. Additionally, the ability to account for variations in fluorescence signal intensity due to changes in distance between the catheter and target lesion during laparoscopic procedures was evaluated.

        RESULTS: NIR imaging with a ProSense750 significantly improved upon the target-to-background ratios (TBRs) of tumor foci in comparison to WL imaging (minimum improvement was approximately 3.5 fold). Based on 52 histologically validated samples, the sensitivity for WL imaging was 69%, while the sensitivity for NIR imaging was 100%. The effects of intraoperative distance changes upon fluorescence intensity were corrected in realtime, resulting in a decrease from 89% to 5% in signal variance during fluorescence laparoscopy.

        CONCLUSIONS: With its molecular specificity, low background autofluorescence, high TBRs, and quantitative signal, optical imaging with NIR protease activatable probes greatly improves upon the intraoperative detection of ovarian cancer metastases.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19135233?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4497
      1. Author :
        Neal K. Devaraj; Edmund J. Keliher; Greg M. Thurber; Matthias Nahrendorf; Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Bioconjugate Chemistry
      6. Products :
      7. Volume :
        20
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        in vivo imaging; fluorescence molecular tomography
      12. Abstract :
        We report the synthesis and in vivo characterization of an 18F modified trimodal nanoparticle (18F-CLIO). This particle consists of cross-linked dextran held together in core-shell formation by a superparamagnetic iron oxide core and functionalized with the radionuclide 18F in high yield via “click” chemistry. The particle can be detected with positron emission tomography, fluorescence molecular tomography, and magnetic resonance imaging. The presence of 18F dramatically lowers the detection threshold of the nanoparticles, while the facile conjugation chemistry provides a simple platform for rapid and efficient nanoparticle labeling.
      13. URL :
        http://pubs.acs.org/doi/abs/10.1021/bc8004649
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4498
      1. Author :
        Steve H. Thorne; Yoram Barak; Wenchuan Liang; Michael H. Bachmann; Jianghong Rao; Christopher H. Contag; A. Matin
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Molecular Cancer Therapeutics
      6. Products :
      7. Volume :
        8
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Cancer; in vivo imaging; drug discovery; chemotherapy
      12. Abstract :
        We report the discovery of a new prodrug, 6-chloro-9-nitro-5-oxo-5H-benzo(a)phenoxazine (CNOB). This prodrug is efficiently activated by ChrR6, the highly active prodrug activating bacterial enzyme we have previously developed. The CNOB/ChrR6 therapy was effective in killing several cancer cell lines in vitro. It also efficiently treated tumors in mice with up to 40% complete remission. 9-Amino-6-chloro-5H-benzo(a)phenoxazine-5-one (MCHB) was the only product of CNOB reduction by ChrR6. MCHB binds DNA; at nonlethal concentration, it causes cell accumulation in the S phase, and at lethal dose, it induces cell surface Annexin V and caspase-3 and caspase-9 activities. Further, MCHB colocalizes with mitochondria and disrupts their electrochemical potential. Thus, killing by CNOB involves MCHB, which likely induces apoptosis through the mitochondrial pathway. An attractive feature of the CNOB/ChrR6 regimen is that its toxic product, MCHB, is fluorescent. This feature proved helpful in in vitro studies because simple fluorescence measurements provided information on the kinetics of CNOB activation within the cells, MCHB killing mechanism, its generally efficient bystander effect in cells and cell spheroids, and its biodistribution. The emission wavelength of MCHB also permitted its visualization in live animals, allowing noninvasive qualitative imaging of MCHB in mice and the tumor microenvironment. This feature may simplify exploration of barriers to the penetration of MCHB in tumors and their amelioration.
      13. URL :
        http://mct.aacrjournals.org/content/8/2/333.abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4500
Back to Search
Select All  |  Deselect All