1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

281–290 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Cernak, I.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Front Neurol
      6. Products :
      7. Volume :
        1
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, RediJect Inflammation Probe, chemiluminescence, XenoLight
      12. Abstract :
        Due to complex injurious environment where multiple blast effects interact with the body parallel, blast-induced neurotrauma is a unique clinical entity induced by systemic, local, and cerebral responses. Activation of autonomous nervous system; sudden pressure increase in vital organs such as lungs and liver; and activation of neuroendocrine-immune system are among the most important mechanisms that contribute significantly to molecular changes and cascading injury mechanisms in the brain. It has been hypothesized that vagally mediated cerebral effects play a vital role in the early response to blast: this assumption has been supported by experiments where bilateral vagotomy mitigated bradycardia, hypotension, and apnea, and also prevented excessive metabolic alterations in the brain of animals exposed to blast. Clinical experience suggests specific blast-body-nervous system interactions such as (1) direct interaction with the head either through direct passage of the blast wave through the skull or by causing acceleration and/or rotation of the head; and (2) via hydraulic interaction, when the blast overpressure compresses the abdomen and chest, and transfers its kinetic energy to the body's fluid phase, initiating oscillating waves that traverse the body and reach the brain. Accumulating evidence suggests that inflammation plays important role in the pathogenesis of long-term neurological deficits due to blast. These include memory decline, motor function and balance impairments, and behavioral alterations, among others. Experiments using rigid body- or head protection in animals subjected to blast showed that head protection failed to prevent inflammation in the brain or reduce neurological deficits, whereas body protection was successful in alleviating the blast-induced functional and morphological impairments in the brain.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21206523
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10420
      1. Author :
        Bratlie, K. M.; Dang, T. T.; Lyle, S.; Nahrendorf, M.; Weissleder, R.; Langer, R.; Anderson, D. G.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        5
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Prosense, IVIS, Animals; Biocompatible Materials/*diagnostic use; Diagnostic Imaging/*methods; *Fluorescence; Macrophage Activation; Materials Testing/*methods; Mice; Models, Animal; Peptide Hydrolases/metabolism; Phagocytes
      12. Abstract :
        BACKGROUND: Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop rapid, non-invasive methods for in vivo quantification of the inflammatory response to implanted biomaterials. Materials were placed subcutaneously in an array format and monitored for host responses as per ISO 10993-6: 2001. Host cell activity in response to these materials was imaged kinetically, in vivo using fluorescent whole animal imaging. Data captured using whole animal imaging displayed similar temporal trends in cellular recruitment of phagocytes to the biomaterials compared to histological analysis. CONCLUSIONS/SIGNIFICANCE: Histological analysis similarity validates this technique as a novel, rapid approach for screening biocompatibility of implanted materials. Through this technique there exists the possibility to rapidly screen large libraries of polymers in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20386609
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10427
      1. Author :
        Tseng, J. C.; Granot, T.; DiGiacomo, V.; Levin, B.; Meruelo, D.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer Gene Ther
      6. Products :
      7. Volume :
        17
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        AngioSense, IVIS, Alphavirus Infections/pathology/*therapy/virology; Animals; Antineoplastic Agents, Phytogenic/therapeutic use; Blotting, Western; Cell Membrane Permeability; Combined Modality Therapy; Cricetinae; Drug Delivery Systems; Female; *Genetic Vectors; Humans; Mice; Mice, SCID; Neovascularization, Pathologic/*prevention & control; Neuroblastoma/blood supply/therapy/virology; *Oncolytic Virotherapy; Ovarian Neoplasms/*blood supply/*therapy/virology; Paclitaxel/therapeutic use; Sindbis Virus/*physiology; Vascular Endothelial Growth Factor A/metabolism; Xenograft Model Antitumor Assays
      12. Abstract :
        Genetic instability of cancer cells generates resistance after initial responses to chemotherapeutic agents. Several oncolytic viruses have been designed to exploit specific signatures of cancer cells, such as important surface markers or pivotal signaling pathways for selective replication. It is less likely for cancer cells to develop resistance given that mutations in these cancer signatures would negatively impact tumor growth and survival. However, as oncolytic viral vectors are large particles, they suffer from inefficient extravasation from tumor blood vessels. Their ability to reach cancer cells is an important consideration in achieving specific oncolytic targeting and potential vector replication. Our previous studies indicated that the Sindbis viral vectors target tumor cells by the laminin receptor. Here, we present evidence that modulating tumor vascular leakiness, using VEGF and/or metronomic chemotherapy regimens, significantly enhances tumor vascular permeability and directly enhances oncolytic Sindbis vector targeting in tumor models. Because host-derived vascular endothelium cells are genetically stable and less likely to develop resistance to chemotherapeutics, a combined metronomic chemotherapeutics and oncolytic vector regimen should provide a new approach for cancer therapy. This mechanism could explain the synergistic treatment outcomes observed in clinical trials of combined therapies.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19798121
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10442
      1. Author :
        Bernthal, N. M.; Stavrakis, A. I.; Billi, F.; Cho, J. S.; Kremen, T. J.; Simon, S. I.; Cheung, A. L.; Finerman, G. A.; Lieberman, J. R.; Adams, J. S.; Miller, L. S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        5
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, Xen29, Xen 29, Staphylococcus aureus Xen29, Animals; Anti-Bacterial Agents/*therapeutic use; Arthroplasty/*adverse effects; Disease Models, Animal; Humans; Joint Diseases/drug therapy/*microbiology/surgery; Joints/microbiology/surgery; Male; Mice; Mice, Inbred C57BL; Minocycline/therapeutic use; Postoperative Complications/drug therapy/microbiology/*prevention &; control; Prostheses and Implants; Rifampin/therapeutic use; Staphylococcal Infections/drug therapy/microbiology/*prevention &; control/surgery; Staphylococcus aureus/drug effects/genetics/*physiology
      12. Abstract :
        BACKGROUND: Post-arthroplasty infections represent a devastating complication of total joint replacement surgery, resulting in multiple reoperations, prolonged antibiotic use, extended disability and worse clinical outcomes. As the number of arthroplasties in the U.S. will exceed 3.8 million surgeries per year by 2030, the number of post-arthroplasty infections is projected to increase to over 266,000 infections annually. The treatment of these infections will exhaust healthcare resources and dramatically increase medical costs. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate novel preventative therapeutic strategies against post-arthroplasty infections, a mouse model was developed in which a bioluminescent Staphylococcus aureus strain was inoculated into a knee joint containing an orthopaedic implant and advanced in vivo imaging was used to measure the bacterial burden in real-time. Mice inoculated with 5x10(3) and 5x10(4) CFUs developed increased bacterial counts with marked swelling of the affected leg, consistent with an acute joint infection. In contrast, mice inoculated with 5x10(2) CFUs developed a low-grade infection, resembling a more chronic infection. Ex vivo bacterial counts highly correlated with in vivo bioluminescence signals and EGFP-neutrophil fluorescence of LysEGFP mice was used to measure the infection-induced inflammation. Furthermore, biofilm formation on the implants was visualized at 7 and 14 postoperative days by variable-pressure scanning electron microscopy (VP-SEM). Using this model, a minocycline/rifampin-impregnated bioresorbable polymer implant coating was effective in reducing the infection, decreasing inflammation and preventing biofilm formation. CONCLUSIONS/SIGNIFICANCE: Taken together, this mouse model may represent an alternative pre-clinical screening tool to evaluate novel in vivo therapeutic strategies before studies in larger animals and in human subjects. Furthermore, the antibiotic-polymer implant coating evaluated in this study was clinically effective, suggesting the potential for this strategy as a therapeutic intervention to combat post-arthroplasty infections.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20830204
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10447
      1. Author :
        Dai, T.; Tegos, G. P.; Zhiyentayev, T.; Mylonakis, E.; Hamblin, M. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Lasers Surg Med
      6. Products :
      7. Volume :
        42
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Administration, Cutaneous; Animals; Disease Models, Animal; Female; *Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; Photobleaching; *Photochemotherapy; Polyethyleneimine/administration & dosage; Porphyrins/*administration & dosage; Radiation-Sensitizing Agents/*administration & dosage; Staphylococcal Skin Infections/etiology/pathology/*therapy; Wound Infection/microbiology/pathology/*therapy
      12. Abstract :
        BACKGROUND AND OBJECTIVE: Methicillin-resistant Staphylococcus aureus (MRSA) skin infections are now known to be a common and important problem in the Unites States. The objective of this study was to investigate the efficacy of photodynamic therapy (PDT) for the treatment of MRSA infection in skin abrasion wounds using a mouse model. STUDY DESIGN/MATERIALS AND METHODS: A mouse model of skin abrasion wound infected with MRSA was developed. Bioluminescent strain of MRSA, a derivative of ATCC 33591, was used to allow the real-time monitoring of the extent of infection in mouse wounds. PDT was performed with the combination of a polyethylenimine (PEI)-ce6 photosensitizer (PS) and non-coherent red light. In vivo fluorescence imaging was carried out to evaluate the effect of photobleaching of PS during PDT. RESULTS: In vivo fluorescence imaging of conjugate PEI-ce6 applied in mice indicated the photobleaching effect of the PS during PDT. PDT induced on average 2.7 log(10) of inactivation of MRSA as judged by loss of bioluminescence in mouse skin abrasion wounds and accelerated the wound healing on average by 8.6 days in comparison to the untreated infected wounds. Photobleaching of PS in the wound was overcome by adding the PS solution in aliquots. CONCLUSION: PDT may represent an alternative approach for the treatment of MRSA skin infections.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20077489
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10553
      1. Author :
        Ragas, X.; Sanchez-Garcia, D.; Ruiz-Gonzalez, R.; Dai, T.; Agut, M.; Hamblin, M. R.; Nonell, S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        J Med Chem
      6. Products :
      7. Volume :
        53
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Animals; Bacterial Infections/*drug therapy; Burns/drug therapy/microbiology; Candida/drug effects; Cations; Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects; Male; Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; *Photochemotherapy; Photosensitizing Agents/*chemical synthesis/chemistry/pharmacology; Porphyrins/*chemical synthesis/chemistry/pharmacology; Solubility; Staphylococcal Infections/drug therapy/microbiology; Structure-Activity Relationship
      12. Abstract :
        Structures of typical photosensitizers used in antimicrobial photodynamic therapy are based on porphyrins, phthalocyanines, and phenothiazinium salts, with cationic charges at physiological pH values. However, derivatives of the porphycene macrocycle (a structural isomer of porphyrin) have barely been investigated as antimicrobial agents. Therefore, we report the synthesis of the first tricationic water-soluble porphycene and its basic photochemical properties. We successfully tested it for in vitro photoinactivation of different Gram-positive and Gram-negative bacteria, as well as a fungal species (Candida) in a drug-dose and light-dose dependent manner. We also used the cationic porphycene in vivo to treat an infection model comprising mouse third degree burns infected with a bioluminescent methicillin-resistant Staphylococcus aureus strain. There was a 2.6-log(10) reduction (p < 0.001) of the bacterial bioluminescence for the PDT-treated group after irradiation with 180 J.cm(-2) of red light.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20936792
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10555
      1. Author :
        Ragas, X.; Sanchez-Garcia, D.; Ruiz-Gonzalez, R.; Dai, T.; Agut, M.; Hamblin, M. R.; Nonell, S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        J Med Chem
      6. Products :
      7. Volume :
        53
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Animals; Bacterial Infections/*drug therapy; Burns/drug therapy/microbiology; Candida/drug effects; Cations; Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects; Male; Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; *Photochemotherapy; Photosensitizing Agents/*chemical synthesis/chemistry/pharmacology; Porphyrins/*chemical synthesis/chemistry/pharmacology; Solubility; Staphylococcal Infections/drug therapy/microbiology; Structure-Activity Relationship
      12. Abstract :
        Structures of typical photosensitizers used in antimicrobial photodynamic therapy are based on porphyrins, phthalocyanines, and phenothiazinium salts, with cationic charges at physiological pH values. However, derivatives of the porphycene macrocycle (a structural isomer of porphyrin) have barely been investigated as antimicrobial agents. Therefore, we report the synthesis of the first tricationic water-soluble porphycene and its basic photochemical properties. We successfully tested it for in vitro photoinactivation of different Gram-positive and Gram-negative bacteria, as well as a fungal species (Candida) in a drug-dose and light-dose dependent manner. We also used the cationic porphycene in vivo to treat an infection model comprising mouse third degree burns infected with a bioluminescent methicillin-resistant Staphylococcus aureus strain. There was a 2.6-log(10) reduction (p < 0.001) of the bacterial bioluminescence for the PDT-treated group after irradiation with 180 J.cm(-2) of red light.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20936792
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10556
Back to Search
Select All  |  Deselect All