1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

81–90 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Close, P.; Gillard, M.; Ladang, A.; Jiang, Z.; Papuga, J.; Hawkes, N.; Nguyen, L.; Chapelle, J. P.; Bouillenne, F.; Svejstrup, J.; Fillet, M.; Chariot, A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        J Biol Chem
      6. Products :
      7. Volume :
        287
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc, Carrier Proteins/genetics/*metabolism; Cell Line, Tumor; *Cell Movement; Gene Deletion; HEK293 Cells; Humans; Melanoma/genetics/*metabolism/pathology; Multiprotein Complexes/genetics/*metabolism; Neoplasm Invasiveness; Neoplasm Proteins/genetics/*metabolism; Proteins/genetics/*metabolism; RNA Polymerase II/genetics/metabolism
      12. Abstract :
        The Elongator complex is composed of 6 subunits (Elp1-Elp6) and promotes RNAPII transcript elongation through histone acetylation in the nucleus as well as tRNA modification in the cytoplasm. This acetyltransferase complex directly or indirectly regulates numerous biological processes ranging from exocytosis and resistance to heat shock in yeast to cell migration and neuronal differentiation in higher eukaryotes. The identity of human ELP1 through ELP4 has been reported but human ELP5 and ELP6 have remained uncharacterized. Here, we report that DERP6 (ELP5) and C3ORF75 (ELP6) encode these subunits of human Elongator. We further investigated the importance and function of these two subunits by a combination of biochemical analysis and cellular assays. Our results show that DERP6/ELP5 is required for the integrity of Elongator and directly connects ELP3 to ELP4. Importantly, the migration and tumorigenicity of melanoma-derived cells are significantly decreased upon Elongator depletion through ELP1 or ELP3. Strikingly, DERP6/ELP5 and C3ORF75/ELP6-depleted melanoma cells have similar defects, further supporting the idea that DERP6/ELP5 and C3ORF75/ELP6 are essential for Elongator function. Together, our data identify DERP6/ELP5 and C3ORF75/ELP6 as key players for migration, invasion and tumorigenicity of melanoma cells, as integral subunits of Elongator.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22854966
      14. Call Number :
        PKI @ kd.modi @ 20
      15. Serial :
        10530
      1. Author :
        Kim, J. K.; Won, Y. W.; Lim, K. S.; Kim, Y. H.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Pharm Res
      6. Products :
      7. Volume :
        29
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc, Animals; Antineoplastic Agents/*administration & dosage/pharmacokinetics/therapeutic use; Delayed-Action Preparations/*chemistry; Male; Methylcellulose/*chemistry; Mice; Mice, Inbred C57BL; *Micelles; Neoplasms/drug therapy; Poloxamer/*chemistry; Taxoids/*administration & dosage/pharmacokinetics/therapeutic use
      12. Abstract :
        PURPOSE: To develop low-molecular-weight methylcellulose (LMw MC)-based gel/Pluronic F127 micelle combination system for local and sustained delivery of docetaxel (DTX). METHODS: LMw MC and Pluronic F127 were used to formulate an injectable thermo-reversible gel/micelle combination system containing DTX. The DTX-loaded combination system was characterized and its therapeutic efficacy evaluated in a subcutaneous tumor model. RESULTS: Mixtures of LMw MC, AS, and Pluronic F127 formed gel at ~15-40 degrees C depending on AS concentration. The combination system released DTX for >30 days with a biphasic and sustained release pattern, and DTX stability was maintained during release. The combination system significantly enhanced anti-cancer effects of DTX and prolonged survival of the model mouse in comparison with free DTX. CONCLUSIONS: The LMw MC gel/Pluronic F127 micelle combination system constitutes a promising tool for reducing tumor size and eradicating remaining tumor cells before and after surgery.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21904934
      14. Call Number :
        PKI @ kd.modi @ 16
      15. Serial :
        10531
      1. Author :
        Lemarie, F.; Chang, C. W.; Blatchford, D. R.; Amor, R.; Norris, G.; Tetley, L.; McConnell, G.; Dufes, C.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Nanomedicine (Lond)
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc
      12. Abstract :
        Aim: The therapeutic potential of epigallocatechin-3-gallate (EGCG), a green tea polyphenol with anticancer properties, is limited by its inability to specifically reach tumors following intravenous administration. The purpose of this study was to determine whether a tumor-targeted vesicular formulation of EGCG would suppress the growth of A431 epidermoid carcinoma and B16-F10 melanoma in vitro and in vivo. Materials & methods: Transferrin-bearing vesicles encapsulating EGCG were administered intravenously to mice bearing subcutaneous A431 and B16-F10 tumors. Results: The intravenous administration of EGCG encapsulated in transferrin-bearing vesicles resulted in tumor suppression in 40% of A431 and B16-F10 tumors. Animal survival was improved by more than 20 days compared with controls. Conclusion: Encapsulation of EGCG in transferrin-bearing vesicles is a promising therapeutic strategy. Original submitted 28 November 2011; Revised submitted 11 May 2012.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22891867
      14. Call Number :
        PKI @ kd.modi @ 14
      15. Serial :
        10532
      1. Author :
        Noberini, R.; Koolpe, M.; Lamberto, I.; Pasquale, E. B.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Pharmacol Res
      6. Products :
      7. Volume :
        66
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc, Animals; COS Cells; Catechin/analogs & derivatives/chemistry/pharmacology; Cell Line; Cercopithecus aethiops; Ephrins/*metabolism; Mice; Polyphenols/*chemistry/*pharmacology; Protein Binding/drug effects; Protein Interaction Maps/*drug effects; Receptor, EphA4/antagonists & inhibitors/metabolism; Receptors, Eph Family/antagonists & inhibitors/*metabolism; Signal Transduction/drug effects; Small Molecule Libraries/chemistry/pharmacology; Tea/*chemistry
      12. Abstract :
        Tea contains a variety of bioactive chemicals, such as catechins and other polyphenols. These compounds are thought to be responsible for the health benefits of tea consumption by affecting the function of many cellular targets, not all of which have been identified. In a high-throughput screen for small molecule antagonists of the EphA4 receptor tyrosine kinase, we identified five tea polyphenols that substantially inhibit EphA4 binding to a synthetic peptide ligand. Further characterization of theaflavin monogallates from black tea and epigallocatechin-3,5-digallate from green tea revealed that these compounds at low micromolar concentrations also inhibit binding of the natural ephrin ligands to EphA4 and several other Eph receptors in in vitro assays. The compounds behave as competitive EphA4 antagonists, and their inhibitory activity is affected by amino acid mutations within the ephrin binding pocket of EphA4. In contrast, the major green tea catechin, epigallocatechin-3-gallate (EGCG), does not appear to be an effective Eph receptor antagonist. In cell culture assays, theaflavin monogallates and epigallocatechin-3,5-digallate inhibit ephrin-induced tyrosine phosphorylation (activation) of Eph receptors and endothelial capillary-like tube formation. However, the wider spectrum of Eph receptors affected by the tea derivatives in cells suggests additional mechanisms of inhibition besides interfering with ephrin binding. These results show that tea polyphenols derived from both black and green tea can suppress the biological activities of Eph receptors. Thus, the Eph receptor tyrosine kinase family represents an important class of targets for tea-derived phytochemicals.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22750215
      14. Call Number :
        PKI @ kd.modi @ 17
      15. Serial :
        10533
      1. Author :
        Pan, Y.; Zhong, L. J.; Zhou, H.; Wang, X.; Chen, K.; Yang, H. P.; Xiaokaiti, Y.; Maimaiti, A.; Jiang, L.; Li, X. J.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Acta Pharmacol Sin
      6. Products :
      7. Volume :
        33
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc, 14-3-3 Proteins/*genetics; Animals; Anticoagulants/pharmacology/*therapeutic use; Antineoplastic Agents/pharmacology/*therapeutic use; Apoptosis/drug effects; Cadherins/genetics; Cell Cycle/drug effects; Cell Line, Tumor; Cell Proliferation/*drug effects; Gene Expression Regulation, Neoplastic/drug effects; Heparin/pharmacology/*therapeutic use; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Metastasis/drug therapy/genetics; Neoplasms/*drug therapy/genetics; Prostate/drug effects/metabolism; Prostatic Neoplasms/drug therapy/genetics; Transforming Growth Factor beta/genetics; Vimentin/*genetics
      12. Abstract :
        AIM: To investigate the inhibitory effects of heparin on PC-3M cells proliferation in vitro and B16-F10-luc-G5 cells metastasis in Balb/c nude mice and identify the protein expression patterns to elucidate the action mechanism of heparin. METHODS: Human prostate cancer PC-3M cells were incubated with heparin 0.5 to 125 mug/mL for 24 h. The proliferation of PC-3M cells was assessed by MTS assay. BrdU incoporation and Ki67 expression were detected using a high content screening (HCS) assay. The cell cycle and apoptosis of PC-3M cells were tested by flow cytometry. B16-F10-luc-G5 cardinoma cells were injected into the lateral tail vein of 6-week old male Balb/c nude mice and heparin 30 mg/kg was administered iv 30 min before and 24 h after injection. The metasis of B16-F10-luc-G5 cells was detected by bioluminescence assay. Activated partial thromboplastin time (APTT) and hemorheological parameters were measured on d 14 after injection of B16-F10-luc-G5 carcinoma cells in Balb/c mice. The global protein changes in PC-3M cells and frozen lung tissues from mice burdened with B16-F10-luc-G5 cells were determined by 2-dimensional gel electrophoresis and image analysis. The protein expression of vimentin and 14-3-3 zeta/delta was measured by Western blot. The mRNA transcription of vimentin, transforming growth factor (TGF)-beta, E-cadherin, and alpha(v)-integrin was measured by RT-PCR. RESULTS: Heparin 25 and 125 mug/mL significantly inhibited the proliferation, arrested the cells in G(1) phase, and suppressed BrdU incorporation and Ki67 expression in PC-3M cells compared with the model group. But it had no significant effect on apoptosis of PC-3M cells. Heparin 30 mg/kg markedly inhibits the metastasis of B16-F10-luc-G5 cells on day 8. Additionally, heparin administration maintained relatively normal red blood hematocrit but had no influence on APTT in nude mice burdened with B16-F10-luc-G5 cells. Thirty of down-regulated protein spots were identified after heparin treatment, many of which are related to tumor development, extracellular signaling, energy metabolism, and cellular proliferation. Vimentin and 14-3-3 zeta/delta were identified in common in PC-3M cells and the lungs of mice bearing B16-F10-luc-G5 carcinoma cells. Heparin 25 and 125 mug/mL decreased the protein expression of vimentin and 14-3-3 zeta/delta and the mRNA expression of alpha(v)-integrin. Heparin 125 mug/mL decreased vimentin and E-cadherin mRNA transcription while increased TGF-beta mRNA transcription in the PC-3M cells, but the differences were not significant. Transfection of vimentin-targeted siRNA for 48 h significantly decreased the BrdU incoporation and Ki67 expression in PC-3M cells. CONCLUSION: Heparin inhibited PC-3M cell proliferation in vitro and B16-F10-luc-G5 cells metastasis in nude mice by inhibition of vimentin, 14-3-3 zeta/delta, and alpha(v)-integrin expression.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22669117
      14. Call Number :
        PKI @ kd.modi @ 13
      15. Serial :
        10534
      1. Author :
        Tafreshi, N. K.; Huang, X.; Moberg, V. E.; Barkey, N. M.; Sondak, V. K.; Tian, H.; Morse, D. L.; Vagner, J.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Bioconjug Chem
      6. Products :
      7. Volume :
        23
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc
      12. Abstract :
        The incidence of malignant melanoma is rising more rapidly than that of any other cancer in the United States. The melanocortin 1 receptor (MC1R) is overexpressed in most human melanoma metastases, thus making it a promising target for imaging and therapy of melanomas. We have previously reported the development of a peptidomimetic ligand with high specificity and affinity for MC1R. Here, we have conjugated near-infrared fluorescent dyes to the C-terminus of this ligand via lysine-mercaptopropionic acid linkers to generate MC1R specific optical probes (MC1RL-800, 0.4 nM K(i); and MC1RL-Cy5, 0.3 nM K(i)). Internalization of the imaging probe was studied in vitro by fluorescence microscopy using engineered A375/MC1R cells and B16F10 cells with endogenous MC1R expression. The in vivo tumor targeting of MC1RL-800 was evaluated by intravenous injection of probe into nude mice bearing bilateral subcutaneous A375 xenograft tumors with low MC1R expression and engineered A375/MC1R tumors with high receptor expression. Melanotic B16F10 xenografts were also studied. Fluorescence imaging showed that the agent has higher uptake values in tumors with high expression compared to low (p < 0.05), demonstrating the effect of expression levels on image contrast-to-noise. In addition, tumor uptake was significantly blocked by coinjection of excess NDP-alpha-MSH peptide (p < 0.05). In conclusion, the MC1R-specific imaging probe developed in this study displays excellent potential for the intraoperative detection of regional node involvement and for margin detection during melanoma metastasis resection.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23116461
      14. Call Number :
        PKI @ kd.modi @ 18
      15. Serial :
        10535
      1. Author :
        Korotcov, A. V.; Ye, Y.; Chen, Y.; Zhang, F.; Huang, S.; Lin, S.; Sridhar, R.; Achilefu, S.; Wang, P. C.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Mol Imaging Biol
      6. Products :
      7. Volume :
        14
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        PC-3M-luc-C6, PC-3M-luc, IVIS, Bioware, Prostate cancer, Bioluminescence, Animals; Cell Line, Tumor; Endocytosis; Fluorescent Dyes/chemistry/*diagnostic use; Glucosamine/chemistry/*diagnostic use; Humans; Kinetics; Male; Mice; Mice, Nude; Molecular Imaging/*methods; Neoplasms/*diagnosis/pathology; Optical Devices; Prostatic Neoplasms/diagnosis/pathology; Spectroscopy, Near-Infrared; Tissue Distribution; *Xenograft Model Antitumor Assays
      12. Abstract :
        PURPOSE: Near-infrared fluorescence (NIRF) imaging is an attractive technique for studying diseases at the molecular level in vivo. Glucose transporters are often used as targets for in vivo imaging of tumors. The efficiency of a tumor-seeking fluorescent probe can be enhanced by attaching one or more glucosamine (GlcN) moieties. This study was designed to evaluate the use of previously developed GlcN-linked NIRF probes for in vitro and in vivo optical imaging of cancer. PROCEDURES: Cellular uptake of the probes (1 muM) was investigated in monolayer cultures of luciferase-expressing PC3 (PC3-luc) cells. The prostate tumors were established as subcutaneous xenografts using PC3-luc cells in nude mice. The biodistributions and tumor-targeting specificities of cypate (cyp), cypate-D: -(+)-glucosamine (cyp-GlcN), and D: -(+)-gluosamine-cypate-D: -(+)-gluosamine (cyp-2GlcN) were studied. The tumor, muscle, and major organs were collected for ex vivo optical imaging. RESULTS: The tumor cell uptake of the probe containing two glucosamine residues, cyp-2GlcN, was significantly higher than the uptake of both the probe with one glucosamine residue, cyp-GlcN, and the probe without glucosamine, cyp only. Similarly, in in vivo experiments, cyp-2GlcN demonstrated higher maximum fluorescence intensity and longer residence lifetime in tumors than cyp-GlcN or cyp. The ex vivo biodistribution analysis revealed that tumor uptake of cyp-2GlcN and cyp-GlcN was four- and twofold higher than that of cyp at 24 h post-injection, respectively. CONCLUSION: Both cyp-GlcN and cyp-2GlcN NIRF probes exhibited good tumor-targeting properties in prostate cancer cell cultures and live mice. The cyp-2GlcN probe showed the highest uptake with good retention characteristics in vivo. The uptake of cyp-2GlcN and cyp-GlcN is likely mediated by glucosamine-recognizing transporters. The uptake mechanism is being explored further for developing cypate-glucosamine-based probes for in vivo imaging.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21971932
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10536
      1. Author :
        Kosaka, N.; Iguchi, H.; Yoshioka, Y.; Hagiwara, K.; Takeshita, F.; Ochiya, T.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        J Biol Chem
      6. Products :
      7. Volume :
        287
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        PC-3M-luc-C6, PC-3M-luc, IVIS, Bioware, Prostate cancer, Bioluminescence
      12. Abstract :
        Normal epithelial cells regulate the secretion of autocrine and paracrine factors that prevent aberrant growth of neighboring cells, leading to healthy development and normal metabolism. One reason for tumor initiation is considered to be a failure of this homeostatic cell competitive system. Here we identify tumor-suppressive microRNAs (miRNAs) secreted by normal cells as anti-proliferative signal entities. Culture supernatant of normal epithelial prostate PNT-2 cells attenuated proliferation of PC-3M-luc cells, prostate cancer cells. Global analysis of miRNA expression signature revealed that a variety of tumor-suppressive miRNAs are released from PNT-2 cells. Of these miRNAs, secretory miR-143 could induce growth inhibition exclusively in cancer cells in vitro and in vivo. These results suggest that secretory tumor-suppressive miRNAs can act as a death signal in a cell competitive process. This study provides a novel insight into a tumor initiation mechanism.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22123823
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10537
      1. Author :
        Noberini, R.; Rubio de la Torre, E.; Pasquale, E. B.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Cell Adh Migr
      6. Products :
      7. Volume :
        6
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        PC-3M-luc-C6, PC-3M-luc, IVIS, Bioware, Prostate cancer, Bioluminescence, Animals; Chromatography, Liquid; Enzyme-Linked Immunosorbent Assay; Ephrins/genetics/*metabolism; Humans; Mass Spectrometry/*methods; Mice; Receptor, EphA1/genetics/*metabolism
      12. Abstract :
        The Eph receptor tyrosine kinase family includes many members, which are often expressed together in various combinations and can promiscuously interact with multiple ephrin ligands, generating intricate networks of intracellular signals that control physiological and pathological processes. Knowing the entire repertoire of Eph receptors and ephrins expressed in a biological sample is important when studying their biological roles. Moreover, given the correlation between Eph receptor/ephrin expression and cancer pathogenesis, their expression patterns could serve important diagnostic and prognostic purposes. However, profiling Eph receptor and ephrin expression has been challenging. Here we describe a novel and straightforward approach to catalog the Eph receptors present in cultured cells and tissues. By measuring the binding of ephrin Fc fusion proteins to Eph receptors in ELISA and pull-down assays, we determined that a mixture of four ephrins is suitable for isolating both EphA and EphB receptors in a single pull-down. We then used mass spectrometry to identify the Eph receptors present in the pull-downs and estimate their relative levels. This approach was validated in cultured human cancer cell lines, human tumor xenograft tissue grown in mice, and mouse brain tissue. The new mass spectrometry approach we have developed represents a useful tool for the identification of the spectrum of Eph receptors present in a biological sample and could also be extended to profiling ephrin expression.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22568954
      14. Call Number :
        PKI @ kd.modi @ 8
      15. Serial :
        10538
      1. Author :
        Shiota, M.; Zardan, A.; Takeuchi, A.; Kumano, M.; Beraldi, E.; Naito, S.; Zoubeidi, A.; Gleave, M. E.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Cancer Res
      6. Products :
      7. Volume :
        72
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        PC-3M-luc-C6, PC-3M-luc, IVIS, Bioware, Prostate cancer, Bioluminescence, Animals; Base Sequence; Blotting, Western; Chromatin Immunoprecipitation; Clusterin/genetics/*physiology; DNA Primers; Epithelial-Mesenchymal Transition/*physiology; Humans; Male; Mice; *Neoplasm Metastasis; Nuclear Proteins/*physiology; Promoter Regions, Genetic; Prostatic Neoplasms/*pathology; Reverse Transcriptase Polymerase Chain Reaction; Transforming Growth Factor beta/*physiology; Twist Transcription Factor/*physiology
      12. Abstract :
        TGF-beta promotes epithelial-mesenchymal transition (EMT) and induces clusterin (CLU) expression, linking these genes to cancer metastasis. CLU is a pleiotropic molecular chaperone that confers survival and proliferative advantage to cancer cells. However, the molecular mechanisms by which TGF-beta regulates CLU expression and CLU affects metastasis remain unknown. In this study, we report that the transcription factor Twist1 mediates TGF-beta-induced CLU expression. By binding to E-boxes in the distal promoter region of CLU gene, Twist1 regulated basal and TGF-beta-induced CLU transcription. In addition, CLU reduction reduced TGF-beta induction of the mesenchymal markers, N-cadherin and fibronectin, thereby inhibiting the migratory and invasive properties induced by TGF-beta. Targeted inhibition of CLU also suppressed metastasis in an in vivo model. Taken together, our findings indicate that CLU is an important mediator of TGF-beta-induced EMT, and suggest that CLU suppression may represent a promising therapeutic option for suppressing prostate cancer metastatic progression.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22896337
      14. Call Number :
        PKI @ kd.modi @ 7
      15. Serial :
        10540
Back to Search
Select All  |  Deselect All