1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

371–380 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Galina Gabriely, Thomas Wurdinger, Santosh Kesari, Christine C. Esau, Julja Burchard, Peter S. Linsley and Anna M. Krichevsky
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Molecular and Cellular Biology
      6. Products :
      7. Volume :
        28
      8. Issue :
        17
      9. Page Numbers :
        N/A
      10. Research Area :
        Neuroscience
      11. Keywords :
        in vivo imaging; MMPSense; microRNA 21; glioma
      12. Abstract :
        Substantial data indicate that microRNA 21 (miR-21) is significantly elevated in glioblastoma (GBM) and in many other tumors of various origins. This microRNA has been implicated in various aspects of carcinogenesis, including cellular proliferation, apoptosis, and migration. We demonstrate that miR-21 regulates multiple genes associated with glioma cell apoptosis, migration, and invasiveness, including the RECK and TIMP3 genes, which are suppressors of malignancy and inhibitors of matrix metalloproteinases (MMPs). Specific inhibition of miR-21 with antisense oligonucleotides leads to elevated levels of RECK and TIMP3 and therefore reduces MMP activities in vitro and in a human model of gliomas in nude mice. Moreover, downregulation of miR-21 in glioma cells leads to decreases of their migratory and invasion abilities. Our data suggest that miR-21 contributes to glioma malignancy by downregulation of MMP inhibitors, which leads to activation of MMPs, thus promoting invasiveness of cancer cells. Our results also indicate that inhibition of a single oncomir, like miR-21, with specific antisense molecules can provide a novel therapeutic approach for “physiological” modulation of multiple proteins whose expression is deregulated in cancer.
      13. URL :
        http://mcb.asm.org/cgi/content/abstract/28/17/5369
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4546
      1. Author :
        Wallis de Vries BM, van Dam GM, Tio RA, Hillebrands JL, Slart RH and Zeebregts CJ
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Journal of Vascular Surgery
      6. Products :
      7. Volume :
        48
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        In vivo imaging; MMPSense; atherosclerotic carotid plaque
      12. Abstract :
        BACKGROUND: There is increasing evidence that plaque vulnerability, rather than the degree of stenosis, is important in predicting the occurrence of subsequent cerebral ischemic events in patients with carotid artery stenosis. The many imaging modalities currently available have different properties with regard to the visualization of the extent of vulnerability in carotid plaque formation.

        METHODS: Original published studies were identified using the MEDLINE database (January 1966 to March 2008). Manual cross-referencing was also performed.

        RESULTS: There is no single imaging modality that can produce definitive information about the state of vulnerability of an atherosclerotic plaque. Each has its own specific drawbacks, which may be the use of ionizing radiation or nephrotoxic contrast agents, an invasive character, low patient tolerability, or simply the paucity of information obtained on plaque vulnerability. Functional molecular imaging techniques such as positron emission tomography (PET), single photon emission-computed tomography (SPECT) and near infra-red spectroscopy (NIRS) do seem able accurately to visualize and even quantify features of plaque vulnerability and its pathophysiologic processes. Promising new techniques like near infra-red fluorescence imaging are being developed and may be beneficial in this field.

        CONCLUSION: There is a promising role for functional molecular imaging modalities like PET, SPECT, or NIRS related to improvement of selection criteria for carotid intervention, especially when combined with CT or MRI to add further anatomical details to molecular information. Further information will be needed to define whether and where this functional molecular imaging will fit into a clinical strategy.
      13. URL :
        http://www.jvascsurg.org/article/S0741-5214(08)01146-4/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4643
      1. Author :
        Wunder A and Klohs J.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Basic Research in Cardiology
      6. Products :
      7. Volume :
        103
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        In vivo imaging; atherosclerosis; bioluminescence imaging; fluorescence imaging; myocardial infarction; stroke; ProSense
      12. Abstract :
        Pathophysiological processes in the vascular system are the major cause of mortality and disease. Atherosclerosis, an inflammatory process in arterial walls, can lead to formation of plaques, whose rupture can lead to thrombus formation, obstruction of vessels (thrombosis), reduction of the blood flow (ischemia), cell death in the tissue fed by the occluded vessel, and depending on the affected vessel, to myocardial infarction or stroke. Imaging techniques enabling visualization of the biological processes involved in this scenario are therefore highly desirable. In recent years, a number of reporter agents and reporter systems have been developed to visualize these processes using different imaging modalities including nuclear imaging techniques, such as positron emission tomography or single photon emission computed tomography, magnetic resonance imaging, and ultrasound. This article comprises a brief overview of optical imaging techniques, such as fluorescence imaging and bioluminescence imaging for the visualization of vascular pathophysiology.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18324374
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4649
      1. Author :
        David E Sosnovik, Matthias Nahrendorf and Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Nature Reviews Cardiology
      6. Products :
      7. Volume :
        5
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        in vivo imaging; fluorescence imaging, molecular imaging, MRI, myocardium, SPECT; MMPSense
      12. Abstract :
        Molecular imaging agents can be targeted to a specific receptor or protein on the cardiomyocyte surface, or to enzymes released into the interstitial space, such as cathepsins, matrix metalloproteinases and myeloperoxidase. Molecular imaging of the myocardium, however, requires the imaging agent to be small, sensitive (nanomolar levels or better), and able to gain access to the interstitial space. Several novel agents that fulfill these criteria have been used for targeted molecular imaging applications in the myocardium. Magnetic resonance, fluorescence, and single-photon emission CT have been used to image the molecular signals generated by these agents. The use of targeted imaging agents in the myocardium has the potential to provide valuable insights into the pathophysiology of myocardial injury and to facilitate the development of novel therapeutic strategies.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597275/?tool=pubmed
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4650
      1. Author :
        Hokaiwado, Naomi; Takeshita, Fumitaka; Naiki-Ito, Aya; Asamoto, Makoto; Ochiya, Takahiro; Shirai, Tomoyuki
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Carcinogenesis
      6. Products :
      7. Volume :
        29
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Androgens; Animals; Animals, Genetically Modified; Apoptosis; Bioware; Blotting, Western; Cell Line, Tumor; Cell Proliferation; Glutathione S-Transferase pi; Humans; In Situ Nick-End Labeling; Male; Neoplasm Transplantation; Oligonucleotide Array Sequence Analysis; PC-3M-luc; Prostatic Neoplasms; Rats; Reverse Transcriptase Polymerase Chain Reaction; RNA, Small Interfering
      12. Abstract :
        Prostate cancers generally acquire an androgen-independent growth capacity with progression, resulting in resistance to antiandrogen therapy. Therefore, identification of the genes regulated through this process may be important for understanding the mechanisms of prostate carcinogenesis. We here utilized androgen-dependent/independent transplantable tumors, newly established with the 'transgenic rat adenocarcinoma in prostate' (TRAP) model, to analyze their gene expression using microarrays. Among the overexpressed genes in androgen-independent prostate cancers compared with the androgen-dependent tumors, glutathione S-transferase pi (GST-pi) was included. In line with this, human prostate cancer cell lines PC3 and DU145 (androgen independent) had higher expression of GST-pi compared with LNCaP (androgen dependent) as determined by semiquantitative reverse transcription-polymerase chain reaction analysis. To investigate the roles of GST-pi expression in androgen-independent human prostate cancers, GST-pi was knocked down by a small interfering RNA (siRNA), resulting in significant decrease of the proliferation rate in the androgen-independent PC3 cell line. In vivo, administration of GST-pi siRNA-atelocollagen complex decreased GST-pi protein expression, resulting in enhanced numbers of TdT mediated dUTP-biotin nick-end labering (TUNEL)-positive apoptotic cells. These findings suggest that GST-pi might play important roles in proliferation of androgen-independent human prostate cancer cells.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18413363
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8967
      1. Author :
        Singh, Abhinav; Massoud, Tarik F; Deroose, Christophe; Gambhir, Sanjiv S
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Seminars in nuclear medicine
      6. Products :
      7. Volume :
        38
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; Diagnostic Imaging; Genes, Reporter; Humans; Male; Molecular Probe Techniques; Neoplasm Proteins; PC-3M-luc; Prostatic Neoplasms; Tumor Markers, Biological
      12. Abstract :
        Prostate cancer remains an important and growing health problem. Advances in imaging of prostate cancer may help to achieve earlier and more accurate diagnosis and treatment. We review the various strategies using reporter genes for molecular imaging of prostate cancer. These approaches are emerging as valuable tools for monitoring gene expression in laboratory animals and humans. Further development of more sensitive and selective reporters, combined with improvements in detection technology, will consolidate the position of reporter gene imaging as a versatile method for understanding of intracellular biological processes and the underlying molecular basis of prostate cancer, as well as potentially establishing a future role in the clinical management of patients afflicted with this disease.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18096460
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8966
      1. Author :
        Shan, Liang; Wang, Songping; Korotcov, Alexandru; Sridhar, Rajagopalan; Wang, Paul C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Ethnicity & disease
      6. Products :
      7. Volume :
        18
      8. Issue :
        2 Suppl 2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Breast Neoplasms; Disease Models, Animal; Humans; Luciferases; Luminescent Measurements; Lung Neoplasms; Mammary Neoplasms, Animal; MDA-MB-231-D3H1 cells; Mice; Mice, Nude; Tumor Cells, Cultured
      12. Abstract :
        INTRODUCTION Convenient animal models are needed to study the progression and treatment of human tumors in vivo. Luciferase-based bioluminescent imaging (BLI) enables researchers to monitor tumors noninvasively and is sensitive to subtle changes in tumors. METHODS Three human breast cancer models in nude mice were established by using luciferase-expressing MDA-MB-231-luc cells. They were subcutaneous xenografts (n = 8), mammary gland xenografts (n = 5), and lung metastases (n = 3). The tumors were imaged in live mice by using a highly sensitive BLI system. The relationship between the intensity of bioluminescence from the tumor was analyzed with respect to tumor volume. Bioluminescent signals from lung metastases were studied to determine the threshold of detectability. RESULTS Tumors growing in the mice's backs and mammary gland fat pads were imaged dynamically after administration of D-luciferin. The bioluminescent intensity from the tumors gradually increased and then decreased in a one-hour span. The time to reach maximum signal intensity differed significantly among tumors and was independent of tumor volume and unrelated to maximum signal intensity. A significant correlation was observed between tumor volume and maximum signal intensity in tumors from both sites. Lung metastatic lesions of .3-.5 mm in diameter were clearly detectable through the entire animal imaging process. CONCLUSION The animal models established with luciferase-expressing cancer cells in combination with BLI provide a system for rapid, noninvasive, and quantitative analysis of tumor biomass and metastasis. This biosystem simplifies in vivo monitoring of tumors and will be useful for noninvasive investigation of tumor growth and response to therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18646323
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8991
Back to Search
Select All  |  Deselect All