1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

311–320 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Klohs J, Baeva N, Steinbrink J, Bourayou R, Boettcher C, Royl G, Megow D, Dirnagl U, Priller J and Wunder A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Journal of Cerebral Blood Flow and Metabolism
      6. Products :
      7. Volume :
        29
      8. Issue :
        7
      9. Page Numbers :
        N/A
      10. Research Area :
        Neuroscience
      11. Keywords :
        MMPSense; in vivo imaging; matrix metalloproteinases; stroke
      12. Abstract :
        Matrix metalloproteinases (MMPs) have been implicated in the pathophysiology of cerebral ischemia. In this study, we explored whether MMP activity can be visualized by noninvasive near-infrared fluorescence (NIRF) imaging using an MMP-activatable probe in a mouse model of stroke. C57Bl6 mice were subjected to transient middle cerebral artery occlusion (MCAO) or sham operation. Noninvasive NIRF imaging was performed 24 h after probe injection, and target-to-background ratios (TBRs) between the two hemispheres were determined. TBRs were significantly higher in MCAO mice injected with the MMP-activatable probe than in sham-operated mice and in MCAO mice that were injected with the nonactivatable probe as controls. Treatment with an MMP inhibitor resulted in significantly lower TBRs and lesion volumes compared to injection of vehicle. To test the contribution of MMP-9 to the fluorescence signal, MMP9-deficient (MMP9(-/-)) mice and wild-type controls were subjected to MCAO of different durations to attain comparable lesion volumes. TBRs were significantly lower in MMP9(-/-) mice, suggesting a substantial contribution of MMP-9 activity to the signal. Our study shows that MMP activity after cerebral ischemia can be imaged noninvasively with NIRF using an MMP-activatable probe, which might be a useful tool to study MMP activity in the pathophysiology of the disease.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19417756
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4547
      1. Author :
        Zongjin Li, Kitchener D. Wilson, Bryan Smith, Daniel L. Kraft, Fangjun Jia, Mei Huang, Xiaoyan Xie, Robert C. Robbins, Sanjiv S. Gambhir, Irving L. Weissman and Joseph C. Wu
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        4
      8. Issue :
        12
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        in vivo imaging; human embryonic stem cells; hESCs; endothelial cells; ECs; AngioSense
      12. Abstract :
        Background: Differentiation of human embryonic stem cells into endothelial cells (hESC-ECs) has the potential to provide an unlimited source of cells for novel transplantation therapies of ischemic diseases by supporting angiogenesis and vasculogenesis. However, the endothelial differentiation efficiency of the conventional embryoid body (EB) method is low while the 2-dimensional method of co-culturing with mouse embryonic fibroblasts (MEFs) require animal product, both of which can limit the future clinical application of hESC-ECs. Moreover, to fully understand the beneficial effects of stem cell therapy, investigators must be able to track the functional biology and physiology of transplanted cells in living subjects over time.

        Methodology: In this study, we developed an extracellular matrix (ECM) culture system for increasing endothelial differentiation and free from contaminating animal cells. We investigated the transcriptional changes that occur during endothelial differentiation of hESCs using whole genome microarray, and compared to human umbilical vein endothelial cells (HUVECs). We also showed functional vascular formation by hESC-ECs in a mouse dorsal window model. Moreover, our study is the first so far to transplant hESC-ECs in a myocardial infarction model and monitor cell fate using molecular imaging methods.

        Conclusion: Taken together, we report a more efficient method for derivation of hESC-ECs that express appropriate patterns of endothelial genes, form functional vessels in vivo, and improve cardiac function. These studies suggest that hESC-ECs may provide a novel therapy for ischemic heart disease in the future.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795856/?tool=pubmed
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4557
      1. Author :
        Kim DE, Kim JY, Schellingerhout D, Shon SM, Jeong SW, Kim EJ and Kim WK
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Molecular Imaging
      6. Products :
      7. Volume :
        8
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        ProSense; in vivo imaging
      12. Abstract :
        Inflammation in atherosclerotic plaques causes plaque vulnerability and rupture, leading to thromboembolic complications. Cathepsin B (CatB) proteases secreted by macrophages play a major role in plaque inflammation. We used a CatB-activatable near-infrared fluorescence (NIRF) imaging agent to demonstrate the inflammatory component in mice atheromata and the atherosclerosis- modulating effects of atorvastatin or glucosamine treatments. Apolipoprotein E knockout mice (n = 35) were fed normal chow, a Western diet, a Western diet + atorvastatin, a Western diet + glucosamine, or a Western diet + atorvastatin + glucosamine for 14 weeks. Twenty-four hours after the intravenous injection of a CatB-activatable probe, ex vivo NIRF imaging of the aortas and brains was performed, followed by histology. The CatB-related signal, observed in the aortas but not in the cerebral arteries, correlated very well with protease activity and the presence of macrophages on histology. Animals on Western diets could be distinguished from animals on a normal diet. The antiatherosclerotic effects of atorvastatin and glucosamine could be demonstrated, with reduced CatB-related signal compared with untreated animals. Plaque populations were heterogeneous within individuals, with some plaques showing a high and others a lower CatB-related signal. These differences in signal intensity could not be predicted by visual inspection of the plaques but did correlate with histologic evidence of inflammation in every case. This suggests that vulnerable inflamed plaques can be identified by optical molecular imaging.
      13. URL :
        http://www.bcdecker.com/pubMedLinkOut.aspx?pub=MIO&vol=8&iss=5&page=291
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4558
      1. Author :
        Filip K. Swirski, Matthias Nahrendorf, Martin Etzrodt, Moritz Wildgruber, Virna Cortez-Retamozo, Peter Panizzi, Jose-Luiz Figueiredo, Rainer H. Kohler, Aleksey Chudnovskiy, Peter Waterman, Elena Aikawa, Thorsten R. Mempel, Peter Libby, Ralph Weissleder and Mikael J. Pittet
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Science
      6. Products :
      7. Volume :
        325
      8. Issue :
        5940
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research; Immunology
      11. Keywords :
        splenic monocytes; in vivo imaging; ProSense; FMT; fluorescence molecular tomography
      12. Abstract :
        A current paradigm states that monocytes circulate freely and patrol blood vessels but differentiate irreversibly into dendritic cells (DCs) or macrophages upon tissue entry. Here we show that bona fide undifferentiated monocytes reside in the spleen and outnumber their equivalents in circulation. The reservoir monocytes assemble in clusters in the cords of the subcapsular red pulp and are distinct from macrophages and DCs. In response to ischemic myocardial injury, splenic monocytes increase their motility, exit the spleen en masse, accumulate in injured tissue, and participate in wound healing. These observations uncover a role for the spleen as a site for storage and rapid deployment of monocytes and identify splenic monocytes as a resource that the body exploits to regulate inflammation.
      13. URL :
        http://www.sciencemag.org/content/325/5940/612.abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4567
      1. Author :
        Matthias Nahrendorf, Peter Waterman, Greg Thurber, Kevin Groves, Milind Rajopadhye, Peter Panizzi, Brett Marinelli, Elena Aikawa, Mikael J Pittet, Filip K Swirski and Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Arteriosclerosis, Thrombosis, and Vascular Biology
      6. Products :
      7. Volume :
        29
      8. Issue :
        10
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        FMT-CT; molecular imaging; atherosclerosis; protease activity; inflammation; in vivo imaging; fluorescence molecular tomography; ProSense
      12. Abstract :
        Objective: Proteases are emerging biomarkers of inflammatory diseases. In atherosclerosis, these enzymes are often secreted by inflammatory macrophages, digest the extracellular matrix of the fibrous cap and destabilize atheromata. Protease function can be monitored with protease activatable imaging probes and quantitated in vivo by fluorescence molecular tomography (FMT). To address two major constraints currently associated with imaging of murine atherosclerosis (lack of highly sensitive probes and absence of anatomical information), we compared protease sensors (PS) of variable size and pharmacokinetics and co-registered FMT datasets with computed tomography (FMT-CT).

        Methods and results: Co-registration of FMT and CT was achieved with a multimodal imaging cartridge containing fiducial markers detectable by both modalities. A high-resolution CT angiography protocol accurately localized fluorescence to the aortic root of atherosclerotic apoE-/- mice. To identify suitable sensors, we first modeled signal kinetics in-silico and then compared three probes with identical oligo-L-lysine cleavage sequences: PS-5, 5nm in diameter containing 2 fluorochromes , PS-25, a 25nm version with an elongated lysine chain and PS-40, a polymeric nanoparticle. Serial FMT-CT showed fastest kinetics for PS-5 but, surprisingly, highest fluorescence in lesions of the aortic root for PS-40. PS-40 robustly reported therapeutic effects of atorvastatin, corroborated by ex vivo imaging and qPCR for the model protease cathepsin B.

        Conclusions: FMT-CT is a robust and observer-independent tool for non-invasive assessment of inflammatory murine atherosclerosis. Reporter-containing nanomaterials may have unique advantages over small molecule agents for in vivo imaging.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746251/?tool=pubmed
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4568
      1. Author :
        Thomas Christen, Matthias Nahrendorf, Moritz Wildgruber, Filip K. Swirski, Elena Aikawa, Peter Waterman, Koichi Shimizu, Ralph Weissleder and Peter Libby
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Circulation
      6. Products :
      7. Volume :
        119
      8. Issue :
        14
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        In vivo imaging; inflammation; leukocytes; rejection; transplantation; fluorescence molecular tomography; FMT; Prosense
      12. Abstract :
        Background: Clinical detection of transplant rejection by repeated endomyocardial biopsy requires catheterization and entails risks. Recently developed molecular and cellular imaging techniques that visualize macrophage host responses could provide a noninvasive alternative. Yet, which macrophage functions may provide useful markers for detecting parenchymal rejection remains uncertain.

        Methods and Results: We transplanted isografts from B6 mice and allografts from Balb/c mice heterotopically into B6 recipients. In this allograft across major histocompatability barriers, the transplanted heart undergoes predictable progressive rejection, leading to graft failure after 1 week. During rejection, crucial macrophage functions, including phagocytosis and release of proteases, render these abundant innate immune cells attractive imaging targets. Two or 6 days after transplantation, we injected either a fluorescent protease sensor or a magnetofluorescent phagocytosis marker. Histological and flow cytometric analyses established that macrophages function as the major cellular signal source. In vivo, we obtained a 3-dimensional functional map of macrophages showing higher phagocytic uptake of magnetofluorescent nanoparticles during rejection using magnetic resonance imaging and higher protease activity in allografts than in isografts using tomographic fluorescence. We further assessed the sensitivity of imaging to detect the degree of rejection. In vivo imaging of macrophage response correlated closely with gradually increasing allograft rejection and attenuated rejection in recipients with a genetically impaired immune response resulting from a deficiency in recombinase-1 (RAG-1-/-).

        Conclusions: Molecular imaging reporters of either phagocytosis or protease activity can detect cardiac allograft rejection noninvasively, promise to enhance the search for novel tolerance-inducing strategies, and have translational potential.
      13. URL :
        http://circ.ahajournals.org/cgi/content/abstract/circulationaha;119/14/1925
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4640
      1. Author :
        Farouc A. Jaffer, Peter Libby and Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Arteriosclerosis, Thrombosis, and Vascular Biology
      6. Products :
      7. Volume :
        29
      8. Issue :
        7
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        In vivo imaging; fluorescence molecular tomography; FMT; ProSense; OsteoSense; atherosclerosis; molecular imaging; optical, fluorescence; multimodality; nanoparticle
      12. Abstract :
        Imaging approaches that visualize molecular targets rather than anatomic structures aim to illuminate vital molecular and cellular aspects of atherosclerosis biology in vivo. Several such molecular imaging strategies stand ready for rapid clinical application. This review describes the growing role of in vivo optical molecular imaging in atherosclerosis and highlights its ability to visualize atheroma inflammation, calcification, and angiogenesis. In addition, we discuss advances in multimodality probes, both in the context of multimodal imaging as well as multifunctional, or “theranostic,” nanoparticles. This review highlights particular molecular imaging strategies that possess strong potential for clinical translation.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733228/?tool=pubmed
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4642
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Circulation
      6. Products :
      7. Volume :
        119
      8. Issue :
        20
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        In vivo imaging; MMPSense
      12. Abstract :
        An extract of the first 250 words of the full text is provided, because this article has no abstract:

        Formation of unstable atherosclerotic plaque in the internal carotid artery carries a high risk for emboli and subsequent cerebral ischemic events. The fibrous cap of such a plaque may become thin and rupture as a result of the depletion of matrix components through the activation of proteolytic enzymes such as matrix-degrading proteinases. Enhanced matrix breakdown has been attributed primarily to a family of matrix-degrading metalloproteinases (MMPs) that are highly concentrated in atherosclerotic plaques by inflammatory cells (eg, macrophages, foam cells), smooth muscle cells and endothelial cells.

        Elevated serum MMP-9 concentration is associated with carotid plaque instability and the presence of infiltrated macrophages. Furthermore, analysis of the presence of MMP-9 protein by ELISA within excised carotid plaques revealed high MMP-9 protein mass in calcified segments at or near the carotid bifurcation and in segments with intraplaque hemorrhage. Gelatin zymography showed an increased gelatinase activity of MMP-9 in these segments. These data favor the important role of MMP-9 in the pathogenesis of plaque instability. We analyzed the topographic distribution of MMPs within an excised human carotid plaque by applying multispectral near-infrared fluorescence (NIRF) imaging (IVIS Spectrum, Caliper Life Sciences, Hopkinton, Mass).

        A surgical endarterectomy was performed on a 74-year-old women with a left-sided, symptomatic, >70% carotid stenosis. Immediately after endarterectomy, the plaque was placed in PBS and transported to the NIRF system. The plaque was then stretched out and fixed on a silicon plate with 25G needles. A PBS NIRF image was generated from both the intraluminal and extraluminal side of the . . .
      13. URL :
        http://circ.ahajournals.org/cgi/content/extract/119/20/e534
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4644
Back to Search
Select All  |  Deselect All