1. Resources
  2. Citations Library

Headers act as filters

  • Records
      1. Author :
        Beck, Benjamin H; Kim, Hyung-Gyoon; Kim, Hyunki; Samuel, Sharon; Liu, Zhiyong; Shrestha, Robin; Haines, Hilary; Zinn, Kurt; Lopez, Richard D
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Breast cancer research and treatment
      6. Products :
      7. Volume :
        122
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        4T1-luc2; Adenocarcinoma; Animals; Bioware; Breast Neoplasms; Cell Line, Tumor; Chemotaxis, Leukocyte; Cytotoxicity, Immunologic; Female; Humans; Immunotherapy, Adoptive; Indium Radioisotopes; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Mice, Knockout; Neoplasm Transplantation; Radiopharmaceuticals; Receptors, Antigen, T-Cell, gamma-delta; Spleen; Tissue Distribution; T-Lymphocyte Subsets; Tomography, Emission-Computed, Single-Photon; Transplantation, Heterologous; Transplantation, Isogeneic
      12. Abstract :
        In contrast to antigen-specific alphabeta-T cells (adaptive immune system), gammadelta-T cells can recognize and lyse malignantly transformed cells almost immediately upon encounter in a manner that does not require the recognition of tumor-specific antigens (innate immune system). Given the well-documented capacity of gammadelta-T cells to innately kill a variety of malignant cells, efforts are now actively underway to exploit the antitumor properties of gammadelta-T cells for clinical purposes. Here, we present for the first time preclinical in vivo mouse models of gammadelta-T cell-based immunotherapy directed against breast cancer. These studies were explicitly designed to approximate clinical situations in which adoptively transferred gammadelta-T cells would be employed therapeutically against breast cancer. Using radioisotope-labeled gammadelta-T cells, we first show that adoptively transferred gammadelta-T cells localize to breast tumors in a mouse model (4T1 mammary adenocarcinoma) of human breast cancer. Moreover, by using an antibody directed against the gammadelta-T cell receptor (TCR), we determined that localization of adoptively transferred gammadelta-T cells to tumor is a TCR-dependant process. Additionally, biodistribution studies revealed that adoptively transferred gammadelta-T cells traffic differently in tumor-bearing mice compared to healthy mice with fewer gammadelta-T cells localizing into the spleens of tumor-bearing mice. Finally, in both syngeneic (4T1) and xenogeneic (2Lmp) models of breast cancer, we demonstrate that adoptively transferred gammadelta-T cells are both effective against breast cancer and are otherwise well-tolerated by treated animals. These findings provide a strong preclinical rationale for using ex vivo expanded adoptively transferred gammadelta-T cells as a form of cell-based immunotherapy for the treatment of breast cancer. Additionally, these studies establish that clinically applicable methods for radiolabeling gammadelta-T cells allows for the tracking of adoptively transferred gammadelta-T cells in tumor-bearing hosts.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19763820
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8939
      1. Author :
        Kim, Jae-Beom; Urban, Konnie; Cochran, Edward; Lee, Steve; Ang, Angel; Rice, Bradley; Bata, Adam; Campbell, Kenneth; Coffee, Richard; Gorodinsky, Alex; Lu, Zhan; Zhou, He; Kishimoto, Takashi Kei; Lassota, Peter
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        PloS one
      6. Products :
      7. Volume :
        5
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        4T1-luc2; Animals; Bicuculline; Bioware; Cell Line, Tumor; Diagnostic Imaging; Female; Genetic Vectors; Lentivirus; Luciferases; Luminescent Measurements; Lung Neoplasms; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Transplantation; Neoplasms; Sensitivity and Specificity; Time Factors; Transfection; Tumor Burden
      12. Abstract :
        Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20186331
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8938
      1. Author :
        Kosaka, Nobuyoshi; Iguchi, Haruhisa; Yoshioka, Yusuke; Takeshita, Fumitaka; Matsuki, Yasushi; Ochiya, Takahiro
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        The Journal of biological chemistry
      6. Products :
      7. Volume :
        285
      8. Issue :
        23
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Aniline Compounds; Animals; Benzylidene Compounds; Biological Transport; Bioware; Cercopithecus aethiops; COS Cells; Culture Media, Conditioned; Exosomes; Gene Silencing; Humans; MicroRNAs; Neoplasms; PC-3M-luc; RNA Interference; RNA, Small Interfering; Sphingomyelin Phosphodiesterase; Tumor Markers, Biological
      12. Abstract :
        The existence of circulating microRNAs (miRNAs) in the blood of cancer patients has raised the possibility that miRNAs may serve as a novel diagnostic marker. However, the secretory mechanism and biological function of extracellular miRNAs remain unclear. Here, we show that miRNAs are released through a ceramide-dependent secretory machinery and that the secretory miRNAs are transferable and functional in the recipient cells. Ceramide, whose biosynthesis is regulated by neutral sphingomyelinase 2 (nSMase2), triggers secretion of small membrane vesicles called exosomes. The decreased activity of nSMase2 with a chemical inhibitor, GW4869, and a specific small interfering RNA resulted in the reduced secretion of miRNAs. Complementarily, overexpression of nSMase2 increased extracellular amounts of miRNAs. We also revealed that the endosomal sorting complex required for transport system is unnecessary for the release of miRNAs. Furthermore, a tumor-suppressive miRNA secreted via this pathway was transported between cells and exerted gene silencing in the recipient cells, thereby leading to cell growth inhibition. Our findings shed a ray of light on the physiological relevance of secretory miRNAs.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20353945
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8946
      1. Author :
        Ranganath, Sudhir H; Fu, Yilong; Arifin, Davis Y; Kee, Irene; Zheng, Lin; Lee, How-Sung; Chow, Pierce K-H; Wang, Chi-Hwa
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Biomaterials
      6. Products :
      7. Volume :
        31
      8. Issue :
        19
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antineoplastic Agents; Bioware; Brain Neoplasms; Cell Line, Tumor; Drug Implants; Glioblastoma; Male; Metabolic Clearance Rate; Mice; Mice, Inbred BALB C; Nanostructures; Paclitaxel; Treatment Outcome; U-87 MG-luc2
      12. Abstract :
        Pharmacokinetics and therapeutic efficacy of submicron/nanoscale, intracranial implants were evaluated for treating malignant glioblastoma in mice. 9.1% (w/w) paclitaxel-loaded polylactide-co-glycolide (PLGA) nanofiber discs (F3) were fabricated and characterized for morphology and size distribution. Along with F3, three other formulations, 9.1% (w/w) paclitaxel-loaded PLGA submicron-fiber discs (F2), 16.7% (w/w) paclitaxel-loaded PLGA microspheres entrapped in hydrogel matrices (H80 and M80) were intracranially implanted in BALB/c mice and the coronal brain sections were analyzed for bio-distribution of paclitaxel on 14, 28 and 42 days post-implantation. BALB/c nude mice with intracranial human glioblastoma (U87 MG-luc2) were used in the therapeutic efficacy study. Animals were randomized to intracranial implantation of F3 and H80 with paclitaxel dose of 10mg/kg, placebo F3, placebo H80, weekly intratumoral injection of Taxol (10mg/kg) or no treatment and the treatment response was analyzed by bioluminescence imaging and histological (H&E, Ki-67) examinations. Enhanced, therapeutic paclitaxel penetration (approximately 1 microm) in the mouse brain up to 5mm from the implant site even after 42 days post-implantation from F3 and H80 was confirmed and deduced to be diffusion/elimination controlled. F3 and H80 demonstrated significant (approximately 30 fold) tumor inhibition and significantly low tumor proliferation index after 41 days of treatment in comparison to sham and placebo controls. The submicron/nanoscale implants are able to demonstrate optimal paclitaxel pharmacokinetics in the brain/tumor with significant tumor inhibition in a glioblastoma xenograft model in mice and hence could be potentially useful to treat highly recurrent GBM.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20350766
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8942
      1. Author :
        Sharma, Praveen K; Singh, Rajesh; Novakovic, Kristian R; Eaton, John W; Grizzle, William E; Singh, Shailesh
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        International journal of cancer. Journal international du cancer
      6. Products :
      7. Volume :
        127
      8. Issue :
        9
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antineoplastic Agents; Apoptosis; Bioware; Caspase 3; Cell Line, Tumor; Chemokines, CC; Disease Progression; Enzyme Activation; Etoposide; Humans; Male; Mice; Mice, Nude; PC-3M-luc; Phosphatidylinositol 3-Kinases; Prostatic Neoplasms; Proto-Oncogene Proteins c-akt; Receptors, CCR; Signal Transduction
      12. Abstract :
        Despite recent advances in treatment and management of prostate cancer (PCa), it remains the second leading cause of cancer-related deaths among men in the US. Chemotherapy is one of the treatment alternatives for hormone refractory metastatic PCa. However, current chemotherapeutic regimens provide palliative benefit but relatively modest survival advantage primarily due to chemo-resistance and upregulated antiapoptotic machineries in PCa cells. Therefore, blocking the mechanisms responsible for suppression of apoptosis might improve current chemotherapeutic regimens. In this study, we show that CC chemokine receptor-9 (CCR9) and its natural ligand CCL25 interaction upregulates antiapoptotic proteins (i.e., PI3K, AKT, ERK1/2 and GSK-3beta) and downregulate activation of caspase-3 in PCa cells. Significant downregulation of these CCR9-mediated antiapoptotic proteins in the presence of a PI3K inhibitor (wortmannin), further suggests that the antiapoptotic action of CCR9 is primarily regulated through PI3K. Furthermore, the cytotoxic effect of etoposide was significantly inhibited in the presence of CCL25, and this inhibitory effect of CCL25 was abrogated when CCR9-CCL25 interaction was blocked using anti-CCR9 monoclonal antibodies. In conformation to these in vitro studies, significant reduction in tumor burden was found in mice receiving CCL25 neutralizing antibodies and etoposide together as compared to both as a single agent. These results suggest that the CCR9-CCL25 axis mediates PI3K/AKT-dependent antiapoptotic signals in PCa cells and could be a possible reason for low apoptosis and modest chemotherapeutic response. Therefore, targeting CCR9-CCL25 axis with cytotoxic agents may provide better therapeutic outcomes than using cytotoxic agents alone.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20127861
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8945
      1. Author :
        Takeshita, Fumitaka; Patrawala, Lubna; Osaki, Mitsuhiko; Takahashi, Ryou-u; Yamamoto, Yusuke; Kosaka, Nobuyoshi; Kawamata, Masaki; Kelnar, Kevin; Bader, Andreas G; Brown, David; Ochiya, Takahiro
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Molecular therapy: the journal of the American Society of Gene Therapy
      6. Products :
      7. Volume :
        18
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Aged; Animals; Bioware; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Down-Regulation; Humans; Male; Mice; MicroRNAs; Middle Aged; PC-3M-luc; Prostatic Neoplasms; Reverse Transcriptase Polymerase Chain Reaction
      12. Abstract :
        Recent reports have linked the expression of specific microRNAs (miRNAs) with tumorigenesis and metastasis. Here, we show that microRNA (miR)-16, which is expressed at lower levels in prostate cancer cells, affects the proliferation of human prostate cancer cell lines both in vitro and in vivo. Transient transfection with synthetic miR-16 significantly reduced cell proliferation of 22Rv1, Du145, PPC-1, and PC-3M-luc cells. A prostate cancer xenograft model revealed that atelocollagen could efficiently deliver synthetic miR-16 to tumor cells on bone tissues in mice when injected into tail veins. In the therapeutic bone metastasis model, injection of miR-16 with atelocollagen via tail vein significantly inhibited the growth of prostate tumors in bone. Cell model studies indicate that miR-16 likely suppresses prostate tumor growth by regulating the expression of genes such as CDK1 and CDK2 associated with cell-cycle control and cellular proliferation. There is a trend toward lower miR-16 expression in human prostate tumors versus normal prostate tissues. Thus, this study indicates the therapeutic potential of miRNA in an animal model of cancer metastasis with systemic miRNA injection and suggest that systemic delivery of miR-16 could be used to treat patients with advanced prostate cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19738602
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8947
      1. Author :
        Thobe, M N; Gurusamy, D; Pathrose, P; Waltz, S E
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Oncogene
      6. Products :
      7. Volume :
        29
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antigens, CD31; Bioware; Blotting, Western; Cell Line; Cell Line, Tumor; Cell Movement; Chemokine CXCL1; Chemokine CXCL5; Chemokines; Endothelial Cells; Gene Expression Regulation, Neoplastic; Humans; Immunohistochemistry; Interleukin-8; Male; Mice; Mice, Nude; Neoplasms, Experimental; Neovascularization, Pathologic; NF-kappa B; PC-3M-luc2; Prostatic Neoplasms; Receptor Protein-Tyrosine Kinases; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Transplantation, Heterologous
      12. Abstract :
        Overexpression of the Ron receptor tyrosine kinase has recently been shown in a wide variety of human cancers. However, no studies have examined Ron receptor expression or function during prostate tumorigenesis. In this study we report that Ron is highly expressed in human prostate adenocarcinoma and metastatic lymph nodes when compared with normal prostate or benign prostate hyperplasia. Furthermore, we show that Ron is overexpressed in PC-3 and DU145 prostate cancer cell lines, and that the levels of angiogenic chemokines produced by prostate cancer cells positively correlate with Ron expression. The knockdown of Ron in PC-3 or DU145 cells results in a significant decrease in angiogenic chemokine production and is associated with a decreased activation of the transcription factor nuclear factor-kappaB (NF-kappaB). Moreover, exogenous overexpression of Ron in LNCaP cells is sufficient to induce a significant increase in angiogenic chemokines that can be abrogated by inhibition of NF-kappaB signaling. Given that the function of angiogenic chemokines is important in the development of new blood vessels, we also examined the ability of Ron to modulate endothelial cell migration. Our data show that knockdown of Ron in prostate cancer cells results in significantly less endothelial cell chemotaxis when compared with Ron-expressing cells in vitro as well as in reduced tumor growth and decreased microvessel density after orthotopic transplantation into the prostate in vivo. In total, our data suggest that the Ron receptor is important in modulating prostate tumor growth by modulating angiogenic chemokine production and subsequent endothelial cell recruitment.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19838218
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8943
      1. Author :
        Zhang, H-Y; Man, J-H; Liang, B; Zhou, T; Wang, C-H; Li, T; Li, H-Y; Li, W-H; Jin, B-F; Zhang, P-J; Zhao, J; Pan, X; He, K; Gong, W-L; Zhang, X-M; Li, A-L
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer gene therapy
      6. Products :
      7. Volume :
        17
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Apoptosis; B16-F10-luc-G5 cells; Bioware; Blotting, Western; Cell Line, Tumor; Escherichia coli; Female; Flow Cytometry; Gene Therapy; Genetic Vectors; Humans; Immunohistochemistry; Mice; Mice, Inbred BALB C; Mice, Nude; NCI-H460-luc2; Neoplasms; Polymerase Chain Reaction; Survival Rate; TNF-Related Apoptosis-Inducing Ligand
      12. Abstract :
        The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent inducer of tumor cell apoptosis, but concerns of considerable liver toxicity limit its uses in human cancer therapy. Here, we show that i.v. injected Escherichia coli DH5alpha (E. coli DH5alpha) specifically replicates in solid tumors and metastases in live animals. E. coli DH5alpha does not enter tumor cells and suits for being the vector for soluble TRAIL (sTRAIL), which induces apoptosis by activating cell-surface death receptors. With the high 'tumor-targeting' nature, we demonstrate that intratumoral (i.t.) and intravenous injection of sTRAIL-expressing E. coli DH5alpha results in the tumor-targeted release of biologically active molecules, which leads to a dramatic reduction in the tumor growth rate and the prolonged survival of tumor-bearing mice. TRAIL delivery by E. coli DH5alpha did not cause any detectable toxicity to any organs, suggesting that E. coli DH5alpha-delivered sTRAIL protein therapy may provide a feasible and effective form of treatment for solid tumors.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20075981
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8944
      1. Author :
        Fogal, Valentina; Richardson, Adam D; Karmali, Priya P; Scheffler, Immo E; Smith, Jeffrey W; Ruoslahti, Erkki
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Molecular and cellular biology
      6. Products :
      7. Volume :
        30
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Carbon; Carrier Proteins; Cell Death; Cell Line, Tumor; Cell Proliferation; Cell Survival; Electron Transport Complex I; Gene Knockdown Techniques; Humans; Mass Spectrometry; MDA-MB-231-D3H2LN cells; Mice; Mitochondria; Mitochondrial Proteins; Neoplasm Metastasis; Neoplasms; Oxidative Phosphorylation; Protein Biosynthesis; Protein Stability; Rotenone
      12. Abstract :
        p32/gC1qR/C1QBP/HABP1 is a mitochondrial/cell surface protein overexpressed in certain cancer cells. Here we show that knocking down p32 expression in human cancer cells strongly shifts their metabolism from oxidative phosphorylation (OXPHOS) to glycolysis. The p32 knockdown cells exhibited reduced synthesis of the mitochondrial-DNA-encoded OXPHOS polypeptides and were less tumorigenic in vivo. Expression of exogenous p32 in the knockdown cells restored the wild-type cellular phenotype and tumorigenicity. Increased glucose consumption and lactate production, known as the Warburg effect, are almost universal hallmarks of solid tumors and are thought to favor tumor growth. However, here we show that a protein regularly overexpressed in some cancers is capable of promoting OXPHOS. Our results indicate that high levels of glycolysis, in the absence of adequate OXPHOS, may not be as beneficial for tumor growth as generally thought and suggest that tumor cells use p32 to regulate the balance between OXPHOS and glycolysis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20100866
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8952
      1. Author :
        Hickson, J; Ackler, S; Klaubert, D; Bouska, J; Ellis, P; Foster, K; Oleksijew, A; Rodriguez, L; Schlessinger, S; Wang, B; Frost, D
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cell death and differentiation
      6. Products :
      7. Volume :
        17
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antineoplastic Agents; Apoptosis; Bioware; Caspase 3; Cell Line, Tumor; Female; Firefly Luciferin; Humans; Luminescent Agents; MDA-MB-231-D3H2LN cells; Mice; Mice, SCID; SKOV3-luc-D3 cells; Molecular Imaging; Neoplasms; Oligopeptides; Taxoids
      12. Abstract :
        Apoptosis is a highly regulated process of programmed cell death essential for normal physiology. Dysregulation of apoptosis contributes to the development and progression of various diseases, including cancer, neurodegenerative disorders, and chronic heart failure. Quantitative noninvasive imaging of apoptosis in preclinical models would allow for dynamic longitudinal screening of compounds and facilitates a more rapid determination of therapeutic efficacy. In this study, we report the in vivo characterization of Z-DEVD-aminoluciferin, a modified firefly luciferase substrate that in apoptotic cells is cleaved by caspase-3 to liberate aminoluciferin, which can be consumed by luciferase to generate a luminescent signal. In two oncology models, namely SKOV3-luc and MDA-MB-231-luc-LN, at 24, 48, and 72 h after treatment with docetaxel, animals were injected with Z-DEVD-aminoluciferin and bioluminescent images were acquired. Significantly more light was detected at 24 (P<0.05), 48 (P<0.01), and 72 h (P<0.01) in the docetaxel-treated group compared with the vehicle-treated group, with caspase-3 activation at these time points confirmed using immunohistochemistry. Importantly, whereas significant differences between groups were detected as early as 24 h after treatment by molecular imaging, caliper measurements were unable to detect a difference for 4-5 additional days. Taken together, these data show that in vivo imaging of apoptosis using Z-DEVD-aminoluciferin could provide a sensitive and rapid method for early detection of drug efficacy, which could potentially be used by numerous therapeutic programs.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20057500
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8950