1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

1–10 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Molecular Imaging and Biology
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Optical imaging, Image-guided surgery, Molecular imaging, Near-infrared fluorescence
      12. Abstract :
        In cancer surgery, intra-operative assessment of the tumor-free margin, which is critical for the prognosis of the patient, relies on the visual appearance and palpation of the tumor. Optical imaging techniques provide real-time visualization of the tumor, warranting intra-operative image-guided surgery. Within this field, imaging in the near-infrared light spectrum offers two essential advantages: increased tissue penetration of light and an increased signal-tobackground-ratio of contrast agents. In this article, we review the various techniques, contrast agents, and camera systems that are currently used for image-guided surgery. Furthermore, we provide an overview of the wide range of molecular contrast agents targeting specific hallmarks of cancer and we describe perspectives on its future use in cancer surgery.
      13. URL :
        http://www.springerlink.com/content/78233815221t6563/
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4486
      1. Author :
        Filip K. Swirski, Ralph Weissleder and Mikael J. Pittet
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        N/A
      5. Publication :
        Arteriosclerosis, Thrombosis, and Vascular Biology
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        atherosclerosis; in vivo imaging; monocytes; VivoTag; FMT; fluorescence molecular tomography
      12. Abstract :
        Monocytes and macrophages play active roles in atherosclerosis, a chronic inflammatory disease that is a leading cause of death in the developed world. The prevailing paradigm states that, during human atherogenesis, monocytes accumulate in the arterial intima and differentiate into macrophages, which then ingest oxidized lipoproteins, secrete a diverse array of proinflammatory mediators, and eventually become foam cells, the key constituents of a vulnerable plaque. Yet monocytes are heterogeneous. In the mouse, one subset (Ly-6Chi) promotes inflammation, expands in hypercholesterolemic conditions, and selectively gives rise to macrophages in atheromata. A different subset (Ly-6Clo) attenuates inflammation and promotes angiogenesis and granulation tissue formation in models of tissue injury, but its role in atherosclerosis is largely unknown. In the human, monocyte heterogeneity is preserved but it is still unresolved how subsets correspond functionally. The contradistinctive properties of these cells suggest commitment for specific function before infiltrating tissue. Such commitment argues for discriminate targeting of deleterious subsets while sparing host defense and repair mechanisms. In addition to advancing our understanding of atherosclerosis, the ability to target and image monocyte subsets would allow us to evaluate drugs designed to selectively inhibit monocyte subset recruitment or function, and to stratify patients at risk for developing complications such as myocardial infarction or stroke. In this review we summarize recent advances of our understanding of the behavioral heterogeneity of monocytes during disease progression and outline emerging molecular imaging approaches to address key questions in the field.
      13. URL :
        http://atvb.ahajournals.org/cgi/content/abstract/ATVBAHA.108.180521v1
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4569
      1. Author :
        Evans, L.; Williams, A.S.; Hayes, A.J.; Jones, S.A.; Nowell, M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Arthritis and Rheumatism
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Apo866; Arthritis; In vivo; Living Image software; MMPSense 750 FAST; Xenogen Caliper IVIS 200
      12. Abstract :
        OBJECTIVE: Using APO866, studies assessed the ability of Pre-B-cell colony-Enhancing Factor (PBEF) to regulate inflammatory and degradative processes in fibroblasts and collagen-induced arthritis. METHODS: ELISAs were used to examine regulation of metalloproteinases and chemokine expression by HFF fibroblasts. PBEF was further examined in the collagen-induced arthritis model using APO866. Disease activity was assessed using radiography, histology, in vivo imaging and quantitative PCR (qPCR). RESULTS: In vitro activation of fibroblasts with PBEF promoted MMP-3, CCL-2 and CXCL-8 expression, an effect inhibited by APO866. Early intervention with APO866 in collagen-induced arthritis inhibited both synovial inflammation, including chemokine-directed leukocyte infiltration, and the systemic marker of inflammation, serum hyaluronic acid. Blockade of degenerative processes by APO866 was further illustrated by the reduced expression of MMP-3 and MMP-13 in joint extracts and reduction of the systemic marker of cartilage erosion, serum cartilage oligomeric matrix protein (COMP). Radiology showed that APO866 protected against bone erosion, whilst qPCR demonstrated inhibition of RANKL expression. APO866 treatment in established disease (clinical score >=5) reduced synovial inflammation, cartilage destruction and halted bone erosion. MMP-3, CCL-2 and RANKL activity, as assessed by in vivo imaging with MMPSense750 and qPCR were reduced in treated animals. qPCR of synovial explants from animals with CIA showed that APO866 inhibited MMP-3, CCL-2 and RANKL production, a result that was reversed with nicotinamide mononucleotide (NMN) CONCLUSIONS: These data confirm PBEF to be an important regulator of inflammation, cartilage catabolism and bone erosion, and highlights APO866 as a promising therapy for targeting PBEF activity in inflammatory arthritis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21400478
      14. Call Number :
        PKI @ user @ 8551
      15. Serial :
        4800
      1. Author :
        Bethunaickan, R.; Berthier, C.C.; Ramanujam, M.; Sahu, R.; Zhang, W.; Sun, Y.; Bottinger, E.P.; Ivashkiv, L.; Kretzler, M.; Davidson, A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Journal of Immunology (Baltimore, Md.: 1950)
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        In vivo; kidney; mice; MMPSense 680; ProSense 680
      12. Abstract :
        Renal infiltration with mononuclear cells is associated with poor prognosis in systemic lupus erythematosus. A renal macrophage/dendritic cell signature is associated with the onset of nephritis in NZB/W mice, and immune-modulating therapies can reverse this signature and the associated renal damage despite ongoing immune complex deposition. In nephritic NZB/W mice, renal F4/80(hi)/CD11c(int) macrophages are located throughout the interstitium, whereas F4/80(lo)/CD11c(hi) dendritic cells accumulate in perivascular lymphoid aggregates. We show here that F4/80(hi)/CD11c(int) renal macrophages have a Gr1(lo)/Ly6C(lo)/VLA4(lo)/MHCII(hi)/CD43(lo)/CD62L(lo) phenotype different from that described for inflammatory macrophages. At nephritis onset, F4/80(hi)/CD11c(int) cells upregulate cell surface CD11b, acquire cathepsin and matrix metalloproteinase activity, and accumulate large numbers of autophagocytic vacuoles; these changes reverse after the induction of remission. Latex bead labeling of peripheral blood Gr1(lo) monocytes indicates that these are the source of F4/80(hi)/CD11c(int) macrophages. CD11c(hi)/MHCII(lo) dendritic cells are found in the kidneys only after proteinuria onset, turnover rapidly, and disappear rapidly after remission induction. Gene expression profiling of the F4/80(hi)/CD11c(int) population displays increased expression of proinflammatory, regulatory, and tissue repair/degradation-associated genes at nephritis onset that reverses with remission induction. Our findings suggest that mononuclear phagocytes with an aberrant activation profile contribute to tissue damage in lupus nephritis by mediating both local inflammation and excessive tissue remodeling.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21411733
      14. Call Number :
        PKI @ user @ 8549
      15. Serial :
        4801
      1. Author :
        Lim, Ed; Modi, Kshitij D; Kim, Jaebeom
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Journal of visualized experiments: JoVE
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        26
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        4T1-luc2; Animals; Bioware; Cell Line, Tumor; Female; Luciferases; Luminescent Measurements; Mammary Neoplasms, Experimental; Mice; Mice, Nude
      12. Abstract :
        4T1 mouse mammary tumor cells can be implanted sub-cutaneously in nu/nu mice to form palpable tumors in 15 to 20 days. This xenograft tumor model system is valuable for the pre-clinical in vivo evaluation of putative antitumor compounds. The 4T1 cell line has been engineered to constitutively express the firefly luciferase gene (luc2). When mice carrying 4T1-luc2 tumors are injected with Luciferin the tumors emit a visual light signal that can be monitored using a sensitive optical imaging system like the IVIS Spectrum. The photon flux from the tumor is proportional to the number of light emitting cells and the signal can be measured to monitor tumor growth and development. IVIS is calibrated to enable absolute quantitation of the bioluminescent signal and longitudinal studies can be performed over many months and over several orders of signal magnitude without compromising the quantitative result. Tumor growth can be monitored for several days by bioluminescence before the tumor size becomes palpable or measurable by traditional physical means. This rapid monitoring can provide insight into early events in tumor development or lead to shorter experimental procedures. Tumor cell death and necrosis due to hypoxia or drug treatment is indicated early by a reduction in the bioluminescent signal. This cell death might not be accompanied by a reduction in tumor size as measured by physical means. The ability to see early events in tumor necrosis has significant impact on the selection and development of therapeutic agents. Quantitative imaging of tumor growth using IVIS provides precise quantitation and accelerates the experimental process to generate results.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19404236
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8941
Back to Search
Select All  |  Deselect All