Home |
Headers act as filters
- Records
-
- Author
:
Marttila-Ichihara, Fumiko; Castermans, Karolien; Auvinen, Kaisa; Oude Egbrink, Mirjam G A; Jalkanen, Sirpa; Griffioen, Arjan W; Salmi, Marko - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Journal of immunology (Baltimore, Md.: 1950) - Products
:
- Volume
:
184 - Issue
:
6 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Adjuvants, Immunologic; Allylamine; Amine Oxidase (Copper-Containing); Animals; Antibodies, Blocking; Antibodies, Monoclonal; B16-F10-luc-G5 cells; Bioware; Cell Adhesion Molecules; Cell Line, Tumor; Cell Migration Inhibition; Enzyme Inhibitors; Female; Growth Inhibitors; Lymphoma, T-Cell; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Myeloid Cells; Semicarbazides - Abstract
:
Vascular adhesion protein-1 (VAP-1) is an endothelial, cell surface-expressed oxidase involved in leukocyte traffic. The adhesive function of VAP-1 can be blocked by anti-VAP-1 Abs and small-molecule inhibitors. However, the effects of VAP-1 blockade on antitumor immunity and tumor progression are unknown. In this paper, we used anti-VAP-1 mAbs and small-molecule inhibitors of VAP-1 in B16 melanoma and EL-4 lymphoma tumor models in C57BL/6 mice. Leukocyte accumulation into tumors and neoangiogenesis were evaluated by immunohistochemistry, flow cytometry, and intravital videomicroscopy. We found that both anti-VAP-1 Abs and VAP-1 inhibitors reduced the number of leukocytes in the tumors, but they targeted partially different leukocyte subpopulations. Anti-VAP-1 Abs selectively inhibited infiltration of CD8-positive lymphocytes into tumors and had no effect on accumulation of myeloid cells into tumors. In contrast, the VAP-1 inhibitors significantly reduced only the number of proangiogenic Gr-1(+)CD11b(+) myeloid cells in melanomas and lymphomas. Blocking of VAP-1 by either means left tumor homing of regulatory T cells and type 2 immune-suppressing monocytes/macrophages intact. Notably, VAP-1 inhibitors, but not anti-VAP-1 Abs, retarded the growth of melanomas and lymphomas and reduced tumor neoangiogenesis. The VAP-1 inhibitors also reduced the binding of Gr-1(+) myeloid cells to the tumor vasculature. We conclude that tumors use the catalytic activity of VAP-1 to recruit myeloid cells into tumors and to support tumor progression. Small-molecule VAP-1 inhibitors therefore might be a potential new tool for immunotherapy of tumors. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/20154208 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8996
- Author
-
- Author
:
N/A - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Journal of immunology (Baltimore, Md.: 1950) - Products
:
- Volume
:
184 - Issue
:
5 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Amino Acid Sequence; Animals; Antimicrobial Cationic Peptides; Bacterial Infections; Bioware; Cell Line; Cells, Cultured; Chemokine CCL2; Chemokine CCL7; Chemokine CXCL1; Chemokines; Female; Humans; Interleukin-8; Leukocytes; Leukocytes, Mononuclear; Macrophages; Mice; Mice, Inbred C57BL; Molecular Sequence Data; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Phosphorylation; Staphylococcal Infections; Staphylococcus aureus; Xen29, Xen14 - Abstract
:
With the rapid rise in the incidence of multidrug resistant infections, there is substantial interest in host defense peptides as templates for production of new antimicrobial therapeutics. Natural peptides are multifunctional mediators of the innate immune response, with some direct antimicrobial activity and diverse immunomodulatory properties. We have previously developed an innate defense regulator (IDR) 1, with protective activity against bacterial infection mediated entirely through its effects on the immunity of the host, as a novel approach to anti-infective therapy. In this study, an immunomodulatory peptide IDR-1002 was selected from a library of bactenecin derivatives based on its substantially more potent ability to induce chemokines in human PBMCs. The enhanced chemokine induction activity of the peptide in vitro correlated with stronger protective activity in vivo in the Staphylococcus aureus-invasive infection model, with a >5-fold reduction in the protective dose in direct comparison with IDR-1. IDR-1002 also afforded protection against the Gram-negative bacterial pathogen Escherichia coli. Chemokine induction by IDR-1002 was found to be mediated through a Gi-coupled receptor and the PI3K, NF-kappaB, and MAPK signaling pathways. The protective activity of the peptide was associated with in vivo augmentation of chemokine production and recruitment of neutrophils and monocytes to the site of infection. These results highlight the importance of the chemokine induction activity of host defense peptides and demonstrate that the optimization of the ex vivo chemokine-induction properties of peptides is a promising method for the rational development of immunomodulatory IDR peptides with enhanced anti-infective activity. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/20107187 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9033
- Author
-
- Author
:
Yang, Li; Johansson, Jan; Ridsdale, Ross; Willander, Hanna; Fitzen, Michael; Akinbi, Henry T; Weaver, Timothy E - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Journal of immunology (Baltimore, Md.: 1950) - Products
:
- Volume
:
184 - Issue
:
2 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Anti-Bacterial Agents; Bronchoalveolar Lavage Fluid; Hydrogen-Ion Concentration; Immunity, Innate; Klebsiella pneumoniae; Macrophages, Alveolar; Mice; Mice, Transgenic; Protein Precursors; Protein Structure, Tertiary; Proteolipids; Saposins; Staphylococcus aureus; Tissue Distribution; Xen5 - Abstract
:
Surfactant protein B (SP-B) proprotein contains three saposin-like protein (SAPLIP) domains: a SAPLIP domain corresponding to the mature SP-B peptide is essential for lung function and postnatal survival; the function of SAPLIP domains in the N-terminal (SP-BN) and C-terminal regions of the proprotein is not known. In the current study, SP-BN was detected in the supernatant of mouse bronchoalveolar lavage fluid (BALF) and in nonciliated bronchiolar cells, alveolar type II epithelial cells, and alveolar macrophages. rSP-BN indirectly promoted the uptake of bacteria by macrophage cell lines and directly killed bacteria at acidic pH, consistent with a lysosomal, antimicrobial function. Native SP-BN isolated from BALF also killed bacteria but only at acidic pH; the bactericidal activity of BALF at acidic pH was completely blocked by SP-BN Ab. Transgenic mice overexpressing SP-BN and mature SP-B peptide had significantly decreased bacterial burden and increased survival following intranasal inoculation with bacteria. These findings support the hypothesis that SP-BN contributes to innate host defense of the lung by supplementing the nonoxidant antimicrobial defenses of alveolar macrophages. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/20007532 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9995
- Author
-
- Author
:
Nijnik, A.; Madera, L.; Ma, S.; Waldbrook, M.; Elliott, M. R.; Easton, D. M.; Mayer, M. L.; Mullaly, S. C.; Kindrachuk, J.; Jenssen, H.; Hancock, R. E. - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
J Immunol - Products
:
- Volume
:
184 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Xen14, Xen 14, E. coli Xen14, IVIS, Amino Acid Sequence; Animals; Antimicrobial Cationic Peptides/chemical synthesis/*pharmacology; Bacterial Infections/*metabolism/microbiology/prevention & control; Cell Line; Cells, Cultured; Chemokine CCL2/metabolism; Chemokine CCL7/metabolism; Chemokine CXCL1/metabolism; Chemokines/*metabolism; Female; Humans; Interleukin-8/metabolism; Leukocytes/cytology/*metabolism; Leukocytes, Mononuclear/cytology/drug effects/metabolism; Macrophages/cytology/drug effects/metabolism; Mice; Mice, Inbred C57BL; Molecular Sequence Data; NF-kappa B/metabolism; Phosphatidylinositol 3-Kinases/metabolism; Phosphorylation/drug effects; Staphylococcal Infections/microbiology/prevention & control; Staphylococcus aureus/drug effects; p38 Mitogen-Activated Protein Kinases/metabolism - Abstract
:
With the rapid rise in the incidence of multidrug resistant infections, there is substantial interest in host defense peptides as templates for production of new antimicrobial therapeutics. Natural peptides are multifunctional mediators of the innate immune response, with some direct antimicrobial activity and diverse immunomodulatory properties. We have previously developed an innate defense regulator (IDR) 1, with protective activity against bacterial infection mediated entirely through its effects on the immunity of the host, as a novel approach to anti-infective therapy. In this study, an immunomodulatory peptide IDR-1002 was selected from a library of bactenecin derivatives based on its substantially more potent ability to induce chemokines in human PBMCs. The enhanced chemokine induction activity of the peptide in vitro correlated with stronger protective activity in vivo in the Staphylococcus aureus-invasive infection model, with a >5-fold reduction in the protective dose in direct comparison with IDR-1. IDR-1002 also afforded protection against the Gram-negative bacterial pathogen Escherichia coli. Chemokine induction by IDR-1002 was found to be mediated through a Gi-coupled receptor and the PI3K, NF-kappaB, and MAPK signaling pathways. The protective activity of the peptide was associated with in vivo augmentation of chemokine production and recruitment of neutrophils and monocytes to the site of infection. These results highlight the importance of the chemokine induction activity of host defense peptides and demonstrate that the optimization of the ex vivo chemokine-induction properties of peptides is a promising method for the rational development of immunomodulatory IDR peptides with enhanced anti-infective activity. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/20107187 - Call Number
:
PKI @ kd.modi @ 6 - Serial
:
10393
- Author
-
- Author
:
Gustavo Batista Menezes; Woo-Yong Lee; Hong Zhou; Christopher Curtis Matchett Waterhouse; Denise Carmona Cara and Paul Kubes - Title
:
- Type
:
Journal Article - Year
:
2009 - Publication
:
Journal of Immunology - Products
:
- Volume
:
183 - Issue
:
11 - Page Numbers
:
N/A - Research Area : Immunology
- Keywords
:
Immunology;Volocity; Xen14 - Abstract
:
N/A - URL
:
http://www.jimmunol.org/cgi/content/abstract/183/11/7557?maxtoshow=&HITS=70&hits=70&RESULTFORMAT=1&andorexacttitle=and&andorexacttitleabs=and&fulltext=volocity+&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=date&fdate=11/1/2009&tdate=2/28/2010&r - Call Number
:
N/A - Serial
:
1622
- Author
-
- Author
:
Wang, J.; Barke, R. A.; Charboneau, R.; Schwendener, R.; Roy, S. - Title
:
- Type
:
Journal Article - Year
:
2008 - Publication
:
J Immunol - Products
:
- Volume
:
180 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals, Cell Line, Cell Line, Transformed, Humans, Macrophages, Alveolar/*drug effects/immunology/*microbiology/pathology, Mice, Mice, Inbred C57BL, Morphine/administration & dosage/*therapeutic use, NF-kappa B/*antagonists & inhibitors/physiology, Neutrophil Infiltration/drug effects/immunology, Pneumonia, Pneumococcal/*drug therapy/*immunology/microbiology/mortality, Signal Transduction/*drug effects/immunology, Streptococcus pneumoniae/drug effects/*immunology, Time Factors, Toll-Like Receptor 2/physiology, Toll-Like Receptor 4/physiology, Toll-Like Receptor 9/*antagonists & inhibitors/physiology IVIS, Xenogen, Xen10 - Abstract
:
Resident alveolar macrophages and respiratory epithelium constitutes the first line of defense against invading lung pneumococci. Results from our study showed that increased mortality and bacterial outgrowth and dissemination seen in morphine-treated mice were further exaggerated following depletion of alveolar macrophages with liposomal clodronate. Using an in vitro alveolar macrophages and lung epithelial cells infection model, we show significant release of MIP-2 from alveolar macrophages, but not from lung epithelial cells, following 4 h of exposure of cells to pneumococci infection. Morphine treatment reduced MIP-2 release in pneumococci stimulated alveolar macrophages. Furthermore, morphine treatment inhibited Streptococcus pneumoniae-induced NF-kappaB-dependent gene transcription in alveolar macrophages following 2 h of in vitro infection. S. pneumoniae infection resulted in a significant induction of NF-kappaB activity only in TLR9 stably transfected HEK 293 cells, but not in TLR2 and TLR4 transfected HEK 293 cells, and morphine treatment inhibited S. pneumoniae-induced NF-kappaB activity in these cells. Moreover, morphine treatment also decreased bacterial uptake and killing in alveolar macrophages. Taken together, these results suggest that morphine treatment impairs TLR9-NF-kappaB signaling and diminishes bacterial clearance following S. pneumoniae infection in resident macrophages during the early stages of infection, leading to a compromised innate immune response. - URL
:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18292587 - Call Number
:
144073 - Serial
:
6976
- Author
-
- Author
:
Figueiredo JL, Passerotti CC, Sponholtz T, Nguyen HT and Weissleder R - Title
:
- Type
:
Journal Article - Year
:
2008 - Publication
:
The Journal of Urology - Products
:
- Volume
:
179 - Issue
:
4 - Page Numbers
:
N/A - Research Area : Physiology
- Keywords
:
OsteoSense; in vivo imaging; urinary calculi; molecular probes; fluorescence; diagnostic imaging; mice - Abstract
:
N/A - URL
:
http://www.jurology.com/article/S0022-5347(07)03141-2/abstract - Call Number
:
PKI @ sarah.piper @ - Serial
:
4529
- Author
-
- Author
:
N/A - Title
:
- Type
:
Journal Article - Year
:
2007 - Publication
:
Journal of immunology (Baltimore, Md.: 1950) - Products
:
- Volume
:
179 - Issue
:
9 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Amine Oxidase (Copper-Containing); Animals; Bacterial Adhesion; Bioware; Cell Adhesion Molecules; Coxsackievirus Infections; Immunity, Mucosal; Immunoglobulin A; Lymphocyte Count; Lymphocytes; Lymphoid Tissue; Mice; Mice, Inbred C57BL; Mice, Knockout; Peyer's Patches; Receptors, Lymphocyte Homing; Staphylococcal Vaccines; Staphylococcus aureus; Xen36 - Abstract
:
VAP-1, an ecto-enzyme expressed on the surface of endothelial cells, is involved in leukocyte trafficking between the blood and tissues under physiological and pathological conditions. In this study, we used VAP-1-deficient mice to elucidate whether absence of VAP-1 alters the immune system under normal conditions and upon immunization and microbial challenge. We found that VAP-1-deficient mice display age-dependent paucity of lymphocytes, in the Peyer's patches of the gut. IgA concentration in serum was also found to be lower in VAP-1(-/-) animals than in wild-type mice. Although there were slightly less CD11a on B and T cells isolated from VAP-1-deficient mice than on those from wild-type mice, there were no differences in the expression of gut-homing-associated adhesion molecules or chemokine receptors. Because anti-VAP-1 therapies are being developed for clinical use to treat inflammation, we determined the effect of VAP-1 deletion on useful immune responses. Oral immunization with OVA showed defective T and B cell responses in VAP-1-deficient mice. Antimicrobial immune responses against Staphylococcus aureus and coxsackie B4 virus were also affected by the absence of VAP-1. Importantly, when the function of VAP-1 was acutely neutralized using small molecule enzyme inhibitors and anti-VAP-1 Abs rather than by gene deletion, no significant impairment in antimicrobial control was detected. In conclusion, VAP-1-deficient mice have mild deviations in the mucosal immune system and therapeutic targeting of VAP-1 does not appear to cause a generalized increase in the risk of infection. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/17947691 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9984
- Author
-
- Author
:
Peter, Christoph; Kielstein, Jan T; Clarke-Katzenberg, Regina; Adams, M Christopher; Pitsiouni, Maria; Kambham, Neeraja; Karimi, Mobin A; Kengatharan, Ken M; Cooke, John P - Title
:
- Type
:
Journal Article - Year
:
2007 - Publication
:
The Journal of urology - Products
:
- Volume
:
177 - Issue
:
6 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Bioware; carcinoma, renal cell; Cell Culture Techniques; Cell Line, Tumor; Cell Proliferation; Firefly Luciferin; HT-29-luc-D6 cells; Humans; Kidney Neoplasms; Luminescence; Luminescent Agents; Male; Mice; Mice, SCID; Models, Biological; Tumor Burden - Abstract
:
PURPOSE Bioluminescent imaging permits sensitive in vivo detection and quantification of cells engineered to emit light. We developed a bioluminescent human renal cancer cell line for in vitro and in vivo studies. MATERIAL AND METHODS The 2 human renal cell carcinoma cell lines SN12-C and SN12-L1 were stably transfected to constitutively express luciferase using a retroviral shuttle. The bioluminescent signal was correlated with tumor cell numbers in vitro. Parental and transfected cells were compared by growth kinetics and histology. Tumor burden after heterotopic injection in immune deficient mice was monitored up to 39 days. The kinetics of the bioluminescent signal was evaluated for 1 to 60 minutes following luciferin injection. RESULTS Bioengineered renal cancer cell lines stably expressed luciferase. The growth kinetics of the cells in vitro and the histology of tumors resulting from implantation of these cells were unaffected by retroviral transfection with the luciferase gene. As few as 1,000 cells could be reliably detected. The intensity of the bioluminescent signal correlated with the number of tumor cells in vitro. Photon emission in vivo and ex vivo correlated significantly with tumor weight at sacrifice. After intraperitoneal injection of luciferin there was a time dependent change in the intensity of the bioluminescent signal with maximum photon emission at 20 minutes (optimal 17 to 25). CONCLUSIONS Luciferase transfected human renal cancer lines allow reliable, rapid, noninvasive and longitudinal monitoring of tumor growth in vivo. The ability to assess tumor development in vivo with time is economical and effective compared to end point data experiments. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/17509355 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9009
- Author
-
- Author
:
N/A - Title
:
- Type
:
Journal Article - Year
:
2007 - Publication
:
American journal of respiratory and critical care medicine - Products
:
- Volume
:
175 - Issue
:
2 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Bioware; Cattle; Cells, Cultured; Cystic Fibrosis; Flavoproteins; Humans; Hydrogen peroxide; Immunity, Innate; Immunity, Mucosal; Lactoperoxidase; Lung Diseases; Pseudomonas aeruginosa; Rats; Reactive Oxygen Species; Respiratory Mucosa; RNA, Small Interfering; Staphylococcus aureus; Thiocyanates; Trachea; Xen8.1 - Abstract
:
RATIONALE The respiratory tract is constantly exposed to airborne microorganisms. Nevertheless, normal airways remain sterile without recruiting phagocytes. This innate immune activity has been attributed to mucociliary clearance and antimicrobial polypeptides of airway surface liquid. Defective airway immunity characterizes cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator, a chloride channel. The pathophysiology of defective immunity in CF remains to be elucidated. OBJECTIVE We investigated the ability of non-CF and CF airway epithelia to kill bacteria through the generation of reactive oxygen species (ROS). METHODS ROS production and ROS-mediated bactericidal activity were determined on the apical surfaces of human and rat airway epithelia and on cow tracheal explants. MEASUREMENTS AND MAIN RESULTS Dual oxidase enzyme of airway epithelial cells generated sufficient H(2)O(2) to support production of bactericidal hypothiocyanite (OSCN(-)) in the presence of airway surface liquid components lactoperoxidase and thiocyanate (SCN(-)). This OSCN(-) formation eliminated Staphylococcus aureus and Pseudomonas aeruginosa on airway mucosal surfaces, whereas it was nontoxic to the host. In contrast to normal epithelia, CF epithelia failed to secrete SCN(-), thereby rendering the oxidative antimicrobial system inactive. CONCLUSIONS These data indicate a novel innate defense mechanism of airways that kills bacteria via ROS and suggest a new cellular and molecular basis for defective airway immunity in CF. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/17082494 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9988
- Author