1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

461–470 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Lim, Ed; Modi, Kshitij D; Kim, Jaebeom
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Journal of visualized experiments: JoVE
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        26
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        4T1-luc2; Animals; Bioware; Cell Line, Tumor; Female; Luciferases; Luminescent Measurements; Mammary Neoplasms, Experimental; Mice; Mice, Nude
      12. Abstract :
        4T1 mouse mammary tumor cells can be implanted sub-cutaneously in nu/nu mice to form palpable tumors in 15 to 20 days. This xenograft tumor model system is valuable for the pre-clinical in vivo evaluation of putative antitumor compounds. The 4T1 cell line has been engineered to constitutively express the firefly luciferase gene (luc2). When mice carrying 4T1-luc2 tumors are injected with Luciferin the tumors emit a visual light signal that can be monitored using a sensitive optical imaging system like the IVIS Spectrum. The photon flux from the tumor is proportional to the number of light emitting cells and the signal can be measured to monitor tumor growth and development. IVIS is calibrated to enable absolute quantitation of the bioluminescent signal and longitudinal studies can be performed over many months and over several orders of signal magnitude without compromising the quantitative result. Tumor growth can be monitored for several days by bioluminescence before the tumor size becomes palpable or measurable by traditional physical means. This rapid monitoring can provide insight into early events in tumor development or lead to shorter experimental procedures. Tumor cell death and necrosis due to hypoxia or drug treatment is indicated early by a reduction in the bioluminescent signal. This cell death might not be accompanied by a reduction in tumor size as measured by physical means. The ability to see early events in tumor necrosis has significant impact on the selection and development of therapeutic agents. Quantitative imaging of tumor growth using IVIS provides precise quantitation and accelerates the experimental process to generate results.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19404236
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8941
      1. Author :
        Dernell, William S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        N/A
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        *Breast Cancer; *Chemotherapy; *Genes; *Luciferase; Anatomy and Physiology; Biochemistry; Bioware; Cells(Biology); Diseases; Drugs; Efficacy; Gel Polymers; Gels; Growth(Physiology); Humans; Image Processing; In Vitro Analysis.; In Vivo Analysis; Luciferase Genes; Medicine and Medical Research; Metastasis; Mouse Models; Paclitaxel Sensitivity; Poloxamer Polymers; Polymers; Preclinical Evaluations; surgery; Synergism; Toxicity; Tumor Cell Lines
      12. Abstract :
        This project evaluated paclitaxel chemotherapy delivery from a gel polymer system placed into a wound bed following conservative (marginal) surgical removal of human breast cancers grown in nude mice. This delivery method was shown to control local tumor disease as well as assist in control of systemic metastasis. We established 5 human breast cancer cell lines within our laboratory. We elected purchase and implement a unique (luciferase) imaging system which allows in vivo imaging of tumor growth and metastasis (and subsequently decrease animal use). Tumor cell lines were transfected with the luciferase gene. In vitro testing of cell lines established paclitaxel sensitivity and showed a synergistic effect of delivering paclitaxel by the poloxamer polymer, especially for the chemotherapy resistant cell line, MCF-7-ADR. We completed the simultaneous evaluation of local and systemic toxicity, local, regional and systemic distribution and local and systemic efficacy of locally delivered paclitaxel chemotherapy following tumor removal using the MCF-7-ADR cell line in nude mice. Intracavitary administration of taxol in poloxamer was well tolerated (locally and systemically) afld resulted in significantly improved control of local tumor regrowth and comparable control of metastasis following marginal tumor removal as compared to intravenous paclitaxel (parent drug) . Sustained drug levels (from polymer delivery) were seen in plasma and liver tissue at 60 days.
      13. URL :
        http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA437225
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8994
      1. Author :
        De Kwaadsteniet, Michele
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        N/A
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Antibiotics -- Therapeutic use; Bacteriocins; Bioware; Dissertations -- Microbiology; Drug resistance in microorganisms; Nisin; Respiratory infections -- Treatment; Skin -- Infections -- Treatment; Staphylococcus aureus; Theses -- Microbiology; Xen29
      12. Abstract :
        Multidrug resistant strains of Staphylococcus aureus is presenting an increasing threat, especially immune compromised individuals. Many of these strains have developed resistance to newly approved drugs such as quinupristin-dalfopristin, linezolid and daptomycin. The search for alternative treatment, including bacteriocins (ribosomally synthesized antimicrobial peptides) of lactic acid bacteria is increasing . Lactococcus lactis subsp. lactis F10, isolated from freshwater catfish, produced a new nisin variant active against clinical strains of S. aureus. The operon encoding nisin F is located on a plasmid and the structural gene has been sequenced. The lantibiotic is closely related to nisin Z, except at position 30 where valine replaced isoleucine. The antimicrobial activity of nisin F against S. aureus was tested in the respiratory tract of Wistar rats. Non-immunosuppressed and immunosuppressed rats were intranasally infected with S. aureus K and then treated with either nisin F or sterile physiological saline. Nisin F protected immunosuppressed rats against S. aureus, as symptoms of an infection were only detected in the trachea and lungs of immunosuppressed rats treated with saline. The safety of intranasally administered nisin F was also evaluated and proved to have no adverse side effects. The potential of nisin F as an antimicrobial agent to treat subcutaneous skin infections was evaluated by infecting C57BL/6 mice with a bioluminescent strain of S. aureus (Xen 36). Immunosuppressed mice were treated with either nisin F or sterile physiological saline 24 h and 48 h after infection with subcutaneously injected S. aureus Xen 36. Histology and bioluminescence flux measurements revealed that nisin F was ineffective in the treatment of deep dermal staphylococcal infections. Non-infected and infected mice treated with nisin F had an influx of polymorphonuclear cells in the deep stroma of the skin tissue. This suggested that nisin F, when injected subcutaneously, may have modulated the immune system. Nisin F proved an effective antimicrobial agent against S. aureus-related infections in the respiratory tract, but not against subcutaneous infections. The outcome of nisin F treatment thus depends on the route of administration and site of infection.
      13. URL :
        http://scholar.sun.ac.za/handle/10019.1/1285
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9042
      1. Author :
        Defresne, F.; Bouzin, C.; Grandjean, M.; Dieu, M.; Raes, M.; Hatzopoulos, A. K.; Kupatt, C.; Feron, O.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Cancer Res
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc,
      12. Abstract :
        Tumor progression is associated with the release of signaling substances from the primary tumor into the bloodstream. Tumor-derived cytokines are known to promote the mobilization and the recruitment of cells from the bone marrow, including endothelial progenitor cells (EPC). Here, we examined whether such paracrine influence could also influence the capacity of EPC to interfere with circulating metastatic cells. We therefore consecutively injected EPC pre-stimulated by tumor conditioned medium (CM-EPC) and luciferase-expressing B16 melanoma cells to mice. A net decrease in metastases spreading (vs non-stimulated EPC) led us to carry out a 2D-DIGE proteomic study to identify possible mediators of EPC-driven protection. Among 33 proteins exhibiting significant changes in expression, SPARC presented the highest induction after EPC exposure to CM. We then showed that contrary to control EPC, SPARC-silenced EPC were not able to reduce the extent of metastases when injected with B16 melanoma cells. Using adhesion tests and the hanging drop assay, we further documented that cell-cell interactions between CM-EPC and melanoma cells were promoted in a SPARC-dependent manner. This interaction led to the engulfment of melanoma cells by CM-EPC, a process prevented by SPARC silencing and mimicked by recombinant SPARC. Finally, we showed that contrary to melanoma cells, the pro-metastatic human breast cancer cell line MDA-MB231-D3H2 reduced SPARC expression in human EPC and stimulated metastases spreading. Our findings unravel the influence of tumor cells on EPC phenotypes through a SPARC-driven accentuation of macrophagic capacity associated with limitations to metastatic spread.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21616936
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10354
      1. Author :
        Fu, J. Y.; Zhang, W.; Blatchford, D. R.; Tetley, L.; McConnell, G.; Dufes, C.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        J Control Release
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc,
      12. Abstract :
        The therapeutic potential of tocotrienol, a vitamin E extract with anti-cancer properties, is hampered by its failure to specifically reach tumors after intravenous administration. In this work, we demonstrated that novel transferrin-bearing, tocopheryl-based multilamellar vesicles entrapping tocotrienol significantly improved tocotrienol uptake by cancer cells overexpressing transferrin receptors. This led to a dramatically improved therapeutic efficacy in vitro, ranging from 17-fold to 72-fold improvement depending on the cell lines, compared to the free drug. In vivo, the intravenous administration of this novel tocotrienol formulation led to complete tumor eradication for 40% of B16-F10 murine melanoma tumors and 20% of A431 human epidermoid carcinoma tumors. Animal survival was improved by more than 20days compared to controls, for the two tumor models tested. These therapeutic effects, together with the lack of toxicity, potentially make transferrin-bearing vesicles entrapping tocotrienol a highly promising therapeutic system as part as an anti-cancer therapeutic strategy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21539872
      14. Call Number :
        PKI @ kd.modi @ 6
      15. Serial :
        10356
Back to Search
Select All  |  Deselect All