1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

31–40 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Hanai, J.; Doro, N.; Sasaki, A. T.; Kobayashi, S.; Cantley, L. C.; Seth, P.; Sukhatme, V. P.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        J Cell Physiol
      6. Products :
      7. Volume :
        227
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        A549-luc-C8, A549-luc, IVIS, Bioware, ATP Citrate (pro-S)-Lyase/*antagonists & inhibitors/genetics; Animals; Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Combined Modality Therapy; Epithelial-Mesenchymal Transition; Female; Gene Knockdown Techniques; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors/*therapeutic use; Lung Neoplasms/*drug therapy/enzymology/pathology/*therapy; MAP Kinase Signaling System/drug effects; Mice; Mutation; Phosphatidylinositol 3-Kinases/antagonists & inhibitors; Proto-Oncogene Proteins c-akt/antagonists & inhibitors; Receptor, Epidermal Growth Factor/genetics; Signal Transduction/drug effects; Xenograft Model Antitumor Assays
      12. Abstract :
        ATP citrate lyase (ACL) catalyzes the conversion of cytosolic citrate to acetyl-CoA and oxaloacetate. A definitive role for ACL in tumorigenesis has emerged from ACL RNAi and chemical inhibitor studies, showing that ACL inhibition limits tumor cell proliferation and survival and induces differentiation in vitro. In vivo, it reduces tumor growth leading to a cytostatic effect and induces differentiation. However, the underlying molecular mechanisms are poorly understood and agents that could enhance the efficacy of ACL inhibition have not been identified. Our studies focus on non-small cell lung cancer (NSCLC) lines, which show phosphatidylinositol 3-kinase (PI3K)/AKT activation secondary to a mutation in the K-Ras gene or the EGFR gene. Here we show that ACL knockdown promotes apoptosis and differentiation, leading to the inhibition of tumor growth in vivo. Moreover, in contrast to most studies, which elucidate how activation/suppression of signaling pathways can modify metabolism, we show that inhibition of a metabolic pathway “reverse signals” and attenuates PI3K/AKT signaling. Additionally, we find that statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which act downstream of ACL in the cholesterol synthesis pathway, dramatically enhance the anti-tumor effects of ACL inhibition, even regressing established tumors. With statin treatment, both PI3K/AKT and the MAPK pathways are affected. Moreover, this combined treatment is able to reduce the growth of EGF receptor resistant tumor cell types. Given the essential role of lipid synthesis in numerous cancers, this work may impact therapy in a broad range of tumors.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21688263
      14. Call Number :
        PKI @ kd.modi @ 10
      15. Serial :
        10523
      1. Author :
        Rahul A. Sheth, Marco Maricevich and Umar Mahmood
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Atherosclerosis
      6. Products :
      7. Volume :
        212
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        Molecular imaging; Abdominal aortic aneurysm; Optical imaging; Pre-clinical; Endovascular imaging; Matrix metalloproteinase; in vivo imaging; MMPSense
      12. Abstract :
        Objectives: We present a method to quantify the inflammatory processes that drive abdominal aortic aneurysm (AAA) development that may help predict the rate of growth and thus guide medical and surgical management. We use an in vivo optical molecular imaging approach to quantify protease activity within the walls of AAAs in a rodent model.

        Methods: AAAs were generated in mice by topical application of calcium chloride, followed by the administration of the MMP inhibitor doxycycline for 3 months. After this time period, an enzyme-activatable optical molecular imaging agent sensitive to MMP activity was administered, and MMP proteolytic activity was measured in vivo. Histology and in situ zymography were performed for validation. AAAs were also generated in rats, and MMP activity within the walls of the AAAs was also quantified endovascularly.

        Results: A dose-dependent response of AAA growth rate to doxycycline administration was demonstrated, with high doses of the drug resulting in nearly complete suppression of aneurysm formation. There was a direct relationship between the rate of aneurysmal growth and measured MMP activity, with a linear best-fit well approximating the relationship. We additionally performed endovascular imaging of AAAs in rats and demonstrated a similar suppression of intramural MMP activity following doxycycline administration.

        Conclusions: We present an in vivo evaluation of MMP activity within the walls of AAAs in rodents and show a direct, linear relationship between proteolytic activity and aneurysmal growth. We also illustrate that this functional imaging method can be performed endovascularly, demonstrating potential pre-clinical and clinical applications.
      13. URL :
        http://www.atherosclerosis-journal.com/article/S0021-9150(10)00390-4/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4550
      1. Author :
        Luis Rodriguez-Menocal1, Yuntao Wei1, Si M. Pham, Melissa St-Pierre, Sen Li, Keith Webster, Pascal Goldschmidt-Clermont and Roberto I. Vazquez-Padron
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Atherosclerosis
      6. Products :
      7. Volume :
        209
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        In-stent restenosis; Mouse; Stent; Animal model; in vivo imaging; MMPSense FAST; FMT
      12. Abstract :
        Background and aims: In-stent restenosis (ISR) is the major complication that occurs after percutaneous coronary interventions to facilitate coronary revascularization. Herein we described a simple and cost-effective model, which reproduces important features of ISR in the mouse.

        Methods and results: Microvascular bare metal stents were successfully implanted in the abdominal aorta of atherosclerotic ApoE-null mice. Patency of implanted stents was interrogated using ultrasound biomicroscopy. Aortas were harvested at different time points after implantation and processed for histopathological analysis. Thrombus formation was histologically detected after 1 day. Leukocyte adherence and infiltration were evident after 7 days and decreased thereafter. Neointimal formation, neointimal thickness and luminal stenosis simultaneously increased up to 28 days after stent implantation. Using multichannel fluorescence molecular tomography (FMT) for spatiotemporal resolution of MMP activities, we observed that MMP activity in the stented aorta of Apo-E null mice was 2-fold higher than that of wild-type mice. Finally, we compared neointimal formation in response to stenting in two genetically different mouse strains. In-stent neointimas in FVB/NJ mice were 2-fold thicker than in C57BL/6J mice (p=0.002).

        Conclusion: We have developed a model that can take advantage of the multiple genetic resources available for the mouse to study the mechanisms of in-stent restenosis.
      13. URL :
        http://www.atherosclerosis-journal.com/article/S0021-9150(09)00825-9/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4555
      1. Author :
        Leuschner, F.; Rauch, P. J.; Ueno, T.; Gorbatov, R.; Marinelli, B.; Lee, W. W.; Dutta, P.; Wei, Y.; Robbins, C.; Iwamoto, Y.; Sena, B.; Chudnovskiy, A.; Panizzi, P.; Keliher, E.; Higgins, J. M.; Libby, P.; Moskowitz, M. A.; Pittet, M. J.; Swirski, F. K.; Weissleder, R.; Nahrendorf, M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        J Exp Med
      6. Products :
      7. Volume :
        209
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Adoptive Transfer; Animals; Biological Markers/metabolism; Cell Death/genetics; Disease Models, Animal; Female; *Hematopoiesis, Extramedullary; Inflammation/immunology/metabolism; Interleukin-1beta/genetics/metabolism; Kinetics; Macrophages/cytology/*physiology; Mice; Mice, Inbred C57BL; Mice, Knockout; Models, Biological; Monocytes/*cytology/*physiology; Myeloid Cells/metabolism; Myocardial Infarction/immunology/pathology/*physiopathology; Signal Transduction; Spleen/physiology; Stroke/immunology/metabolism; Wound Healing/physiology
      12. Abstract :
        Monocytes (Mo) and macrophages (MPhi) are emerging therapeutic targets in malignant, cardiovascular, and autoimmune disorders. Targeting of Mo/MPhi and their effector functions without compromising innate immunity's critical defense mechanisms first requires addressing gaps in knowledge about the life cycle of these cells. Here we studied the source, tissue kinetics, and clearance of Mo/MPhi in murine myocardial infarction, a model of acute inflammation after ischemic injury. We found that a) Mo tissue residence time was surprisingly short (20 h); b) Mo recruitment rates were consistently high even days after initiation of inflammation; c) the sustained need of newly made Mo was fostered by extramedullary monocytopoiesis in the spleen; d) splenic monocytopoiesis was regulated by IL-1beta; and e) the balance of cell recruitment and local death shifted during resolution of inflammation. Depending on the experimental approach, we measured a 24 h Mo/MPhi exit rate from infarct tissue between 5 and 13% of the tissue cell population. Exited cells were most numerous in the blood, liver, and spleen. Abrogation of extramedullary monocytopoiesis proved deleterious for infarct healing and accelerated the evolution of heart failure. We also detected rapid Mo kinetics in mice with stroke. These findings expand our knowledge of Mo/MPhi flux in acute inflammation and provide the groundwork for novel anti-inflammatory strategies for treating heart failure.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22213805
      14. Call Number :
        PKI @ kd.modi @ 27
      15. Serial :
        10370
      1. Author :
        Waldner, M. J.; Wirtz, S.; Jefremow, A.; Warntjen, M.; Neufert, C.; Atreya, R.; Becker, C.; Weigmann, B.; Vieth, M.; Rose-John, S.; Neurath, M. F.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        J Exp Med
      6. Products :
      7. Volume :
        207
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Blotting, Western; Cell Proliferation/drug effects; Cells, Cultured; Colitis/chemically induced/complications; Colonic Neoplasms/etiology/genetics/*metabolism; Dextran Sulfate; Endothelial Cells/metabolism; Epithelial Cells/metabolism; Gene Expression; Humans; Immunohistochemistry; Inflammatory Bowel Diseases/genetics/*metabolism; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Microscopy, Confocal; Reverse Transcriptase Polymerase Chain Reaction; STAT3 Transcription Factor/genetics/metabolism; *Signal Transduction; Up-Regulation; Vascular Endothelial Growth Factor A/genetics/metabolism/pharmacology; Vascular Endothelial Growth Factor Receptor-1/genetics/metabolism; Vascular Endothelial Growth Factor Receptor-2/genetics/*metabolism
      12. Abstract :
        Whereas the inhibition of vascular endothelial growth factor (VEGF) has shown promising results in sporadic colon cancer, the role of VEGF signaling in colitis-associated cancer (CAC) has not been addressed. We found that, unlike sporadic colorectal cancer and control patients, patients with CAC show activated VEGFR2 on intestinal epithelial cells (IECs). We then explored the function of VEGFR2 in a murine model of colitis-associated colon cancer characterized by increased VEGFR2 expression. Epithelial cells in tumor tissue expressed VEGFR2 and responded to VEGF stimulation with augmented VEGFR2-mediated proliferation. Blockade of VEGF function via soluble decoy receptors suppressed tumor development, inhibited tumor angiogenesis, and blocked tumor cell proliferation. Functional studies revealed that chronic inflammation leads to an up-regulation of VEGFR2 on IECs. Studies in conditional STAT3 mutant mice showed that VEGFR signaling requires STAT3 to promote epithelial cell proliferation and tumor growth in vivo. Thus, VEGFR-signaling acts as a direct growth factor for tumor cells in CAC, providing a molecular link between inflammation and the development of colon cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21098094
      14. Call Number :
        PKI @ kd.modi @ 34
      15. Serial :
        10385
      1. Author :
        Brandl, K.; Plitas, G.; Schnabl, B.; DeMatteo, R. P.; Pamer, E. G.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        J Exp Med
      6. Products :
      7. Volume :
        204
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals, Bone Marrow Cells/metabolism/microbiology, Gene Expression Regulation, Intestines/metabolism, Kinetics, Lectins/chemistry, Listeria Infections/*metabolism/*prevention & control, Listeria monocytogenes/*metabolism, Mice, Mice, Inbred C57BL, Mice, Transgenic, Myeloid Differentiation Factor 88/metabolism/*physiology, Proteins/*metabolism, Recombinant Proteins/metabolism, Toll-Like Receptors/metabolism IVIS, Xenogen, Xen32
      12. Abstract :
        Listeria monocytogenes is a food-borne bacterial pathogen that causes systemic infection by traversing the intestinal mucosa. Although MyD88-mediated signals are essential for defense against systemic L. monocytogenes infection, the role of Toll-like receptor and MyD88 signaling in intestinal immunity against this pathogen has not been defined. We show that clearance of L. monocytogenes from the lumen of the distal small intestine is impaired in MyD88(-/-) mice. The distal ileum of wild-type (wt) mice expresses high levels of RegIII gamma, which is a bactericidal lectin that is secreted into the bowel lumen, whereas RegIII gamma expression in MyD88(-/-) mice is nearly undetectable. In vivo depletion of RegIII gamma from the small intestine of wt mice diminishes killing of luminal L. monocytogenes, whereas reconstitution of MyD88-deficient mice with recombinant RegIII gamma enhances intestinal bacterial clearance. Experiments with bone marrow chimeric mice reveal that MyD88-mediated signals in nonhematopoietic cells induce RegIII gamma expression in the small intestine, thereby enhancing bacterial killing. Our findings support a model of MyD88-mediated epithelial conditioning that protects the intestinal mucosa against bacterial invasion by inducing RegIII gamma.
      13. URL :
        http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17635956
      14. Call Number :
        136402
      15. Serial :
        7029
      1. Author :
        Shi, Lei; Takahashi, Kazue; Dundee, Joseph; Shahroor-Karni, Sarit; Thiel, Steffen; Jensenius, Jens Christian; Gad, Faten; Hamblin, Michael R; Sastry, Kedarnath N; Ezekowitz, R Alan B
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2004
      5. Publication :
        The Journal of experimental medicine
      6. Products :
      7. Volume :
        199
      8. Issue :
        10
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Disease Susceptibility; DNA, Bacterial; Lung; Mannose-Binding Lectin; Mice; Mice, Knockout; Reference Values; Reverse Transcriptase Polymerase Chain Reaction; Spleen; Staphylococcal Infections; Xen8.1
      12. Abstract :
        Gram-positive organisms like Staphylococcus aureus are a major cause of morbidity and mortality worldwide. Humoral response molecules together with phagocytes play a role in host responses to S. aureus. The mannose-binding lectin (MBL, also known as mannose-binding protein) is an oligomeric serum molecule that recognizes carbohydrates decorating a broad range of infectious agents including S. aureus. Circumstantial evidence in vitro and in vivo suggests that MBL plays a key role in first line host defense. We tested this contention directly in vivo by generating mice that were devoid of all MBL activity. We found that 100% of MBL-null mice died 48 h after exposure to an intravenous inoculation of S. aureus compared with 45% mortality in wild-type mice. Furthermore, we demonstrated that neutrophils and MBL are required to limit intraperitoneal infection with S. aureus. Our study provides direct evidence that MBL plays a key role in restricting the complications associated with S. aureus infection in mice and raises the idea that the MBL gene may act as a disease susceptibility gene against staphylococci infections in humans.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15148336
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9994
Back to Search
Select All  |  Deselect All