1. Resources
  2. Citations Library

Headers act as filters

  • Records
      1. Author :
        Ale, A.; Ermolayev, V.; Herzog, E.; Cohrs, C.; de Angelis, M. H.; Ntziachristos, V.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Nat Methods
      6. Products :
      7. Volume :
        9
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        OsteoSense, Animals; Bone Remodeling; Disease Models, Animal; Equipment Design; Female; Fluorescence; Head and Neck Neoplasms/pathology/radiography; Image Processing, Computer-Assisted/*methods; Lung Neoplasms/pathology/radiography; Mammary Neoplasms, Experimental/pathology/radiography; Mice; Osteogenesis Imperfecta/pathology/radiography; Tomography, Optical/*methods; Tomography, X-Ray Computed/*methods
      12. Abstract :
        The development of hybrid optical tomography methods to improve imaging performance has been suggested over a decade ago and has been experimentally demonstrated in animals and humans. Here we examined in vivo performance of a camera-based hybrid fluorescence molecular tomography (FMT) system for 360 degrees imaging combined with X-ray computed tomography (XCT). Offering an accurately co-registered, information-rich hybrid data set, FMT-XCT has new imaging possibilities compared to stand-alone FMT and XCT. We applied FMT-XCT to a subcutaneous 4T1 tumor mouse model, an Aga2 osteogenesis imperfecta model and a Kras lung cancer mouse model, using XCT information during FMT inversion. We validated in vivo imaging results against post-mortem planar fluorescence images of cryoslices and histology data. Besides offering concurrent anatomical and functional information, FMT-XCT resulted in the most accurate FMT performance to date. These findings indicate that addition of FMT optics into the XCT gantry may be a potent upgrade for small-animal XCT systems.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22561987
      14. Call Number :
        PKI @ kd.modi @ 12
      15. Serial :
        10468
      1. Author :
        Abdelwahab, M. G.; Fenton, K. E.; Preul, M. C.; Rho, J. M.; Lynch, A.; Stafford, P.; Scheck, A. C.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        7
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        GL261-luc2, IVIS, 3-Hydroxybutyric Acid/metabolism; Animals; Blood Glucose/metabolism; Brain/metabolism/pathology; Combined Modality Therapy; Disease Models, Animal; Glioma/*diet therapy/*radiotherapy; Humans; Kaplan-Meier Estimate; *Ketogenic Diet; Ketones/blood; Mice; Mice, Inbred C57BL; Neoplasm Transplantation; Time Factors
      12. Abstract :
        INTRODUCTION: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal(R) (KC) is a nutritionally complete, commercially available 4:1 (fat:carbohydrate+protein) ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis causes changes to brain homeostasis that have potential for the treatment of other neurological diseases such as malignant gliomas. METHODS: We used an intracranial bioluminescent mouse model of malignant glioma. Following implantation animals were maintained on standard diet (SD) or KC. The mice received 2x4 Gy of whole brain radiation and tumor growth was followed by in vivo imaging. RESULTS: Animals fed KC had elevated levels of beta-hydroxybutyrate (p = 0.0173) and an increased median survival of approximately 5 days relative to animals maintained on SD. KC plus radiation treatment were more than additive, and in 9 of 11 irradiated animals maintained on KC the bioluminescent signal from the tumor cells diminished below the level of detection (p<0.0001). Animals were switched to SD 101 days after implantation and no signs of tumor recurrence were seen for over 200 days. CONCLUSIONS: KC significantly enhances the anti-tumor effect of radiation. This suggests that cellular metabolic alterations induced through KC may be useful as an adjuvant to the current standard of care for the treatment of human malignant gliomas.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22563484
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10485
      1. Author :
        Noberini, R.; Rubio de la Torre, E.; Pasquale, E. B.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Cell Adh Migr
      6. Products :
      7. Volume :
        6
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        PC-3M-luc-C6, PC-3M-luc, IVIS, Bioware, Prostate cancer, Bioluminescence, Animals; Chromatography, Liquid; Enzyme-Linked Immunosorbent Assay; Ephrins/genetics/*metabolism; Humans; Mass Spectrometry/*methods; Mice; Receptor, EphA1/genetics/*metabolism
      12. Abstract :
        The Eph receptor tyrosine kinase family includes many members, which are often expressed together in various combinations and can promiscuously interact with multiple ephrin ligands, generating intricate networks of intracellular signals that control physiological and pathological processes. Knowing the entire repertoire of Eph receptors and ephrins expressed in a biological sample is important when studying their biological roles. Moreover, given the correlation between Eph receptor/ephrin expression and cancer pathogenesis, their expression patterns could serve important diagnostic and prognostic purposes. However, profiling Eph receptor and ephrin expression has been challenging. Here we describe a novel and straightforward approach to catalog the Eph receptors present in cultured cells and tissues. By measuring the binding of ephrin Fc fusion proteins to Eph receptors in ELISA and pull-down assays, we determined that a mixture of four ephrins is suitable for isolating both EphA and EphB receptors in a single pull-down. We then used mass spectrometry to identify the Eph receptors present in the pull-downs and estimate their relative levels. This approach was validated in cultured human cancer cell lines, human tumor xenograft tissue grown in mice, and mouse brain tissue. The new mass spectrometry approach we have developed represents a useful tool for the identification of the spectrum of Eph receptors present in a biological sample and could also be extended to profiling ephrin expression.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22568954
      14. Call Number :
        PKI @ kd.modi @ 8
      15. Serial :
        10538
      1. Author :
        Yigit, M. V.; Ghosh, S. K.; Kumar, M.; Petkova, V.; Kavishwar, A.; Moore, A.; Medarova, Z.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Oncogene
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-luc-D3H2Ln, D3H2Ln, Bioware, IVIS
      12. Abstract :
        Metastases, and not the primary tumor from which they originate, are the main reason for mortality from carcinoma. Although the molecular mechanisms behind metastasis are poorly understood, it is clear that epigenetic dysregulation at the level of microRNA expression is a key characteristic of the metastatic process that can be exploited for therapy. Here, we describe an miRNA-targeted therapeutic approach for the prevention and arrest of lymph node metastasis. Therapy relies on the inhibition of the pro-metastatic microRNA-10b. It is delivered to primary and lymph node metastatic tumor cells using an imaging-capable nanodrug that is designed to specifically home to these tissues. Treatment of invasive human breast tumor cells (MDA-MB-231) with the nanodrug in vitro downregulates miR-10b and abolishes the invasion and migration of the tumor cells. After intravenous delivery to mice bearing orthotopic MDA-MB-231-luc-D3H2LN tumors, the nanodrug accumulates in the primary tumor and lymph nodes. When treatment is initiated before metastasis to lymph nodes, metastasis is prevented. Treatment after the formation of lymph node metastases arrests the metastatic process without a concomitant effect on primary tumor growth raising the possibility of a context-dependent variation in miR-10b breast oncogenesis.Oncogene advance online publication, 14 May 2012; doi:10.1038/onc.2012.173.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22580603
      14. Call Number :
        PKI @ kd.modi @ 9
      15. Serial :
        10505
      1. Author :
        Subbarayan, P. R.; Sarkar, M.; Nagaraja Rao, S.; Philip, S.; Kumar, P.; Altman, N.; Reis, I.; Ahmed, M.; Ardalan, B.; Lokeshwar, B. L.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        J Ethnopharmacol
      6. Products :
      7. Volume :
        142
      8. Issue :
        N/A
      9. Page Numbers :
        523-30
      10. Research Area :
        N/A
      11. Keywords :
        BxPC-3, BxPC-3-luc2, IVIS, Achyranthes; Animals; Antineoplastic Agents, Phytogenic/pharmacology/*therapeutic use; Apoptosis/*drug effects; Caspase 3/genetics/metabolism; Gene Expression/drug effects; Humans; Injections, Intraperitoneal; Medicine, Ayurvedic; Mice; Mice, Nude; Pancreatic Neoplasms/*drug therapy/genetics/metabolism; Phosphorylation; *Phytotherapy; Plant Extracts/pharmacology/*therapeutic use; Plant Leaves; Proto-Oncogene Proteins c-akt/metabolism; RNA, Messenger/metabolism; Xenograft Model Antitumor Assays
      12. Abstract :
        ETHNOPHARMACOLOGICAL RELEVANCE: Achyranthes aspera (Family Amaranthacea) is used for cancer therapy by ayurvedic medical practitioners in India. However, due to the non formal nature of its use, there are no systematic studies validating its medicinal properties. Thus, it's utility as an anti cancer agent remains anecdotal. Earlier, we demonstrated A. aspera to exhibit time and dose-dependent preferential cytotoxicity to cultured human pancreatic cancer cells. In this report we validate in vivo anti tumor properties of A. aspera. MATERIALS AND METHODS: The in vivo anti tumor activity of leaf extract (LE) was tested by intraperitoneal (IP) injections into athymic mice harboring human pancreatic tumor subcutaneous xenograft. Toxicity was monitored by recording changes in behavioral, histological, hematological and body weight parameters. RESULTS: Dosing LE to athymic mice by I.P. injection for 32 days showed no adverse reactions in treated mice. Compared to the control set, IP administration of LE to tumor bearing mice significantly reduced both tumor weight and volume. Gene expression analysis using Real time PCR methods revealed that LE significantly induced caspase-3 mRNA (p<0.001) and suppressed expression of the pro survival kinase Akt-1 (p<0.05). TUNEL assay and immunohistochemistry confirmed apoptosis induction by activation of caspase-3 and inhibiting Akt phosphorylation in treated sets. These results are in agreement with RT PCR data. CONCLUSION: Taken together, these data suggest A. aspera to have potent anti cancer property.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22640722
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10484
      1. Author :
        Smith, B. R.; Kempen, P.; Bouley, D.; Xu, A.; Liu, Z.; Melosh, N.; Dai, H.; Sinclair, R.; Gambhir, S. S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Nano Lett
      6. Products :
      7. Volume :
        12
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        AngioSense, Animals; *Disease Models, Animal; Ear Neoplasms/*blood supply/pathology; Humans; Mice; Microscopy, Fluorescence; Nanoparticles/*chemistry; *Nanotechnology; Nanotubes, Carbon/chemistry; Neoplasms, Experimental/*blood supply/pathology; Particle Size; Quantum Dots; Surface Properties
      12. Abstract :
        Delivery is one of the most critical obstacles confronting nanoparticle use in cancer diagnosis and therapy. For most oncological applications, nanoparticles must extravasate in order to reach tumor cells and perform their designated task. However, little understanding exists regarding the effect of nanoparticle shape on extravasation. Herein we use real-time intravital microscopic imaging to meticulously examine how two different nanoparticles behave across three different murine tumor models. The study quantitatively demonstrates that high-aspect ratio single-walled carbon nanotubes (SWNTs) display extravasational behavior surprisingly different from, and counterintuitive to, spherical nanoparticles although the nanoparticles have similar surface coatings, area, and charge. This work quantitatively indicates that nanoscale extravasational competence is highly dependent on nanoparticle geometry and is heterogeneous.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22650417
      14. Call Number :
        PKI @ kd.modi @ 9
      15. Serial :
        10439
      1. Author :
        Pan, Y.; Zhong, L. J.; Zhou, H.; Wang, X.; Chen, K.; Yang, H. P.; Xiaokaiti, Y.; Maimaiti, A.; Jiang, L.; Li, X. J.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Acta Pharmacol Sin
      6. Products :
      7. Volume :
        33
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc, 14-3-3 Proteins/*genetics; Animals; Anticoagulants/pharmacology/*therapeutic use; Antineoplastic Agents/pharmacology/*therapeutic use; Apoptosis/drug effects; Cadherins/genetics; Cell Cycle/drug effects; Cell Line, Tumor; Cell Proliferation/*drug effects; Gene Expression Regulation, Neoplastic/drug effects; Heparin/pharmacology/*therapeutic use; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Metastasis/drug therapy/genetics; Neoplasms/*drug therapy/genetics; Prostate/drug effects/metabolism; Prostatic Neoplasms/drug therapy/genetics; Transforming Growth Factor beta/genetics; Vimentin/*genetics
      12. Abstract :
        AIM: To investigate the inhibitory effects of heparin on PC-3M cells proliferation in vitro and B16-F10-luc-G5 cells metastasis in Balb/c nude mice and identify the protein expression patterns to elucidate the action mechanism of heparin. METHODS: Human prostate cancer PC-3M cells were incubated with heparin 0.5 to 125 mug/mL for 24 h. The proliferation of PC-3M cells was assessed by MTS assay. BrdU incoporation and Ki67 expression were detected using a high content screening (HCS) assay. The cell cycle and apoptosis of PC-3M cells were tested by flow cytometry. B16-F10-luc-G5 cardinoma cells were injected into the lateral tail vein of 6-week old male Balb/c nude mice and heparin 30 mg/kg was administered iv 30 min before and 24 h after injection. The metasis of B16-F10-luc-G5 cells was detected by bioluminescence assay. Activated partial thromboplastin time (APTT) and hemorheological parameters were measured on d 14 after injection of B16-F10-luc-G5 carcinoma cells in Balb/c mice. The global protein changes in PC-3M cells and frozen lung tissues from mice burdened with B16-F10-luc-G5 cells were determined by 2-dimensional gel electrophoresis and image analysis. The protein expression of vimentin and 14-3-3 zeta/delta was measured by Western blot. The mRNA transcription of vimentin, transforming growth factor (TGF)-beta, E-cadherin, and alpha(v)-integrin was measured by RT-PCR. RESULTS: Heparin 25 and 125 mug/mL significantly inhibited the proliferation, arrested the cells in G(1) phase, and suppressed BrdU incorporation and Ki67 expression in PC-3M cells compared with the model group. But it had no significant effect on apoptosis of PC-3M cells. Heparin 30 mg/kg markedly inhibits the metastasis of B16-F10-luc-G5 cells on day 8. Additionally, heparin administration maintained relatively normal red blood hematocrit but had no influence on APTT in nude mice burdened with B16-F10-luc-G5 cells. Thirty of down-regulated protein spots were identified after heparin treatment, many of which are related to tumor development, extracellular signaling, energy metabolism, and cellular proliferation. Vimentin and 14-3-3 zeta/delta were identified in common in PC-3M cells and the lungs of mice bearing B16-F10-luc-G5 carcinoma cells. Heparin 25 and 125 mug/mL decreased the protein expression of vimentin and 14-3-3 zeta/delta and the mRNA expression of alpha(v)-integrin. Heparin 125 mug/mL decreased vimentin and E-cadherin mRNA transcription while increased TGF-beta mRNA transcription in the PC-3M cells, but the differences were not significant. Transfection of vimentin-targeted siRNA for 48 h significantly decreased the BrdU incoporation and Ki67 expression in PC-3M cells. CONCLUSION: Heparin inhibited PC-3M cell proliferation in vitro and B16-F10-luc-G5 cells metastasis in nude mice by inhibition of vimentin, 14-3-3 zeta/delta, and alpha(v)-integrin expression.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22669117
      14. Call Number :
        PKI @ kd.modi @ 13
      15. Serial :
        10534
      1. Author :
        Zhang, J.; Preda, D. V.; Vasquez, K. O.; Morin, J.; Delaney, J.; Bao, B.; Percival, M. D.; Xu, D.; McKay, D.; Klimas, M.; Bednar, B.; Sur, C.; Gao, D. Z.; Madden, K.; Yared, W.; Rajopadhye, M.; Peterson, J. D.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Am J Physiol Renal Physiol
      6. Products :
      7. Volume :
        303
      8. Issue :
        N/A
      9. Page Numbers :
        F593-603
      10. Research Area :
        N/A
      11. Keywords :
        ReninSense 680 FAST, FMT, Animal Feed/analysis; Animals; Cathepsin D; Cathepsin G; Female; Fluorescent Dyes/*pharmacology; Humans; Mice; Mice, Inbred C57BL; Peptides/*pharmacology; Peptidyl-Dipeptidase A/metabolism; Rats; Renin/*blood/*metabolism; Renin-Angiotensin System/physiology; Sensitivity and Specificity; Sodium, Dietary
      12. Abstract :
        The renin-angiotensin system (RAS) is well studied for its regulation of blood pressure and fluid homeostasis, as well as for increased activity associated with a variety of diseases and conditions, including cardiovascular disease, diabetes, and kidney disease. The enzyme renin cleaves angiotensinogen to form angiotensin I (ANG I), which is further cleaved by angiotensin-converting enzyme to produce ANG II. Although ANG II is the main effector molecule of the RAS, renin is the rate-limiting enzyme, thus playing a pivotal role in regulating RAS activity in hypertension and organ injury processes. Our objective was to develop a near-infrared fluorescent (NIRF) renin-imaging agent for noninvasive in vivo detection of renin activity as a measure of tissue RAS and in vitro plasma renin activity. We synthesized a renin-activatable agent, ReninSense 680 FAST (ReninSense), using a NIRF-quenched substrate derived from angiotensinogen that is cleaved specifically by purified mouse and rat renin enzymes to generate a fluorescent signal. This agent was assessed in vitro, in vivo, and ex vivo to detect and quantify increases in plasma and kidney renin activity in sodium-sensitive inbred C57BL/6 mice maintained on a low dietary sodium and diuretic regimen. Noninvasive in vivo fluorescence molecular tomographic imaging of the ReninSense signal in the kidney detected increased renin activity in the kidneys of hyperreninemic C57BL/6 mice. The agent also effectively detected renin activity in ex vivo kidneys, kidney tissue sections, and plasma samples. This approach could provide a new tool for assessing disorders linked to altered tissue and plasma renin activity and to monitor the efficacy of therapeutic treatments.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22674025
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10572
      1. Author :
        Xing, H. R.; Zhang, Q.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Methods Mol Biol
      6. Products :
      7. Volume :
        872
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        AngioSense, Animals; Antineoplastic Agents/therapeutic use; Diagnostic Imaging/*methods; Female; Mammary Neoplasms, Animal/metabolism/pathology; Mice; Mice, Nude; Neoplasm Transplantation; Neovascularization, Pathologic/drug therapy/*pathology
      12. Abstract :
        In vivo angiogenesis assays provide more physiologically relevant information about tumor vascularization than in vitro studies because they take the complex interactions among cancer cells, endothelial cells, mural cells, and tumor stroma into consideration. Traditional microscopic assessment of vascular density conducted by immunostaining of tissue sections or by lectin angiogram visualization of tumor vessels is invasive and requires the sacrifice of tumor-bearing animals. Therefore, it prohibits longitudinal time-course observation in a single animal and requires a large number of animals at each time point to derive statistically-meaningful observations. Additionally, heterogenous behavior among different tumors will inevitably introduce individual biological variance that may obscure reliable interpretation of the results. While various artificial in vivo angiogenesis assays, such as the Matrigel implant assay, chick chorioallatoic membrane assay, and dorsal skin fold chamber assay have been developed and employed to more directly observe the progression of physiological angiogenesis, they can not appropriately assess tumor angiogenic progression or tumor vascular regression in response to therapeutic intervention. Here, we describe a noninvasive method and a detailed protocol that we have developed and optimized using the Olympus OV-100 in vivo imaging system for real-time high-resolution visualization and assessment of tumor angiogenesis and vascular response to anticancer therapies in live animals. We show that using this approach, tumor vessels can be monitored longitudinally through the whole vasculogenesis and angiogenesis process in the same mouse. Further, morphologic changes of the same vessel prior to and after drug treatments can be captured with microscopic high resolution. Moreover, the multichannel co-imaging capability of the OV-100 allows us to analyze and compare tumor vessel permeability before and after antiangiogenesis therapy by employing a near-infrared blood pool reagent, or by visualizing improved cytotoxic drug delivery upon tumor vessel normalization by using a fluorophore tagged drug. This noninvasive method can be readily applied to orthotopically transplanted breast cancer models as well as to subcutaneously-transplanted tumor models.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22700407
      14. Call Number :
        PKI @ kd.modi @ 4
      15. Serial :
        10443
      1. Author :
        Chen, J.; Gallo, K. A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Cancer Res
      6. Products :
      7. Volume :
        72
      8. Issue :
        N/A
      9. Page Numbers :
        4130-40
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-luc2-tdtomato, IVIS, tdtomato, fluorescent protein, Animals; Breast Neoplasms/enzymology/*metabolism/*pathology; Cell Line, Tumor; Cell Movement/*physiology; Chemokine CXCL12/metabolism; Female; Humans; MAP Kinase Kinase Kinases/*metabolism; MAP Kinase Signaling System; Mice; Mice, Nude; Neoplasm Invasiveness; Paxillin/*metabolism; Phosphorylation
      12. Abstract :
        MLK3 kinase activates multiple mitogen-activated protein kinases and plays a critical role in cancer cell migration and invasion. In the tumor microenvironment, prometastatic factors drive breast cancer invasion and metastasis, but their associated signaling pathways are not well-known. Here, we provide evidence that MLK3 is required for chemokine (CXCL12)-induced invasion of basal breast cancer cells. We found that MLK3 induced robust phosphorylation of the focal adhesion scaffold paxillin on Ser 178 and Tyr 118, which was blocked by silencing or inhibition of MLK3-JNK. Silencing or inhibition of MLK3, inhibition of JNK, or expression of paxillin S178A all led to enhanced Rho activity, indicating that the MLK3-JNK-paxillin axis limits Rho activity to promote focal adhesion turnover and migration. Consistent with this, MLK3 silencing increased focal adhesions and stress fibers in breast cancer cells. MLK3 silencing also decreased the formation of breast cancer lung metastases in vivo, and breast cancer cells derived from mouse lung metastases showed enhanced Ser 178 paxillin phosphorylation. Taken together, our findings suggest that the MLK3-JNK-paxillin signaling axis may represent a potential therapeutic target and/or prognostic marker in breast cancer metastasis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22700880
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10495