Home |
Headers act as filters
- Records
-
- Author
:
Georgel, Philippe; Crozat, Karine; Lauth, Xavier; Makrantonaki, Evgenia; Seltmann, Holger; Sovath, Sosathya; Hoebe, Kasper; Du, Xin; Rutschmann, Sophie; Jiang, Zhengfan; Bigby, Timothy; Nizet, Victor; Zouboulis, Christos C; Beutler, Bruce - Title
:
- Type
:
Journal Article - Year
:
2005 - Publication
:
Infection and immunity - Products
:
- Volume
:
73 - Issue
:
8 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Anti-Bacterial Agents; Bioware; Chromosome Mapping; Eye Diseases; Fatty Acids, Monounsaturated; Likelihood Functions; Lod Score; Mice; Mice, Inbred C57BL; Oleic Acid; Receptors, Immunologic; Sequence Analysis, DNA; Skin; Staphylococcal Skin Infections; Stearoyl-CoA Desaturase; Streptococcus pyogenes; Time Factors; Toll-Like Receptor 2; Xen8.1, Xen20, Xen14 - Abstract
:
flake (flk), an N-ethyl-N-nitrosourea-induced recessive germ line mutation of C57BL/6 mice, impairs the clearance of skin infections by Streptococcus pyogenes and Staphylococcus aureus, gram-positive pathogens that elicit innate immune responses by activating Toll-like receptor 2 (TLR2). Positional cloning and sequencing revealed that flk is a novel allele of the stearoyl coenzyme A desaturase 1 gene (Scd1). flake homozygotes show reduced sebum production and are unable to synthesize the monounsaturated fatty acids (MUFA) palmitoleate (C(16:1)) and oleate (C(18:1)), both of which are bactericidal against gram-positive (but not gram-negative) organisms in vitro. However, intradermal MUFA administration to S. aureus-infected mice partially rescues the flake phenotype, which indicates that an additional component of the sebum may be required to improve bacterial clearance. In normal mice, transcription of Scd1-a gene with numerous NF-kappaB elements in its promoter--is strongly and specifically induced by TLR2 signaling. Similarly, the SCD1 gene is induced by TLR2 signaling in a human sebocyte cell line. These observations reveal the existence of a regulated, lipid-based antimicrobial effector pathway in mammals and suggest new approaches to the treatment or prevention of infections with gram-positive bacteria. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/16040962 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9990
- Author
-
- Author
:
Takeshita, Fumitaka; Minakuchi, Yoshiko; Nagahara, Shunji; Honma, Kimi; Sasaki, Hideo; Hirai, Kotaro; Teratani, Takumi; Namatame, Nachi; Yamamoto, Yusuke; Hanai, Koji; Kato, Takashi; Sano, Akihiko; Ochiya, Takahiro - Title
:
- Type
:
Journal Article - Year
:
2005 - Publication
:
Proceedings of the National Academy of Sciences of the United States of America - Products
:
- Volume
:
102 - Issue
:
34 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Bioware; Bone Neoplasms; Cell Line, Tumor; Collagen; DNA-Binding Proteins; Drug Carriers; Gene Expression Regulation, Neoplastic; Gene Therapy; Humans; Luciferases; Male; Mice; PC-3M-luc; Phosphatidylinositol 3-Kinases; Prostatic Neoplasms; Reverse Transcriptase Polymerase Chain Reaction; RNA, Small Interfering; Transcription Factors - Abstract
:
Silencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis and represents a potential strategy for therapeutic product development. However, there are no reports of systemic delivery for siRNAs toward treatment of bone-metastatic cancer. Accordingly, we report here that i.v. injection of GL3 luciferase siRNA complexed with atelocollagen showed effective reduction of luciferase expression from bone-metastatic prostate tumor cells developed in mouse thorax, jaws, and/or legs. We also show that the siRNA/atelocollagen complex can be efficiently delivered to tumors 24 h after injection and can exist intact at least for 3 days. Furthermore, atelocollagen-mediated systemic administration of siRNAs such as enhancer of zeste homolog 2 and phosphoinositide 3'-hydroxykinase p110-alpha-subunit, which were selected as candidate targets for inhibition of bone metastasis, resulted in an efficient inhibition of metastatic tumor growth in bone tissues. In addition, upregulation of serum IL-12 and IFN-alpha levels was not associated with the in vivo administration of the siRNA/atelocollagen complex. Thus, for treatment of bone metastasis of prostate cancer, an atelocollagen-mediated systemic delivery method could be a reliable and safe approach to the achievement of maximal function of siRNA. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/16091473 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8979
- Author
-
- Author
:
Kadurugamuwa, J. L.; Modi, K.; Yu, J.; Francis, K. P.; Orihuela, C.; Tuomanen, E.; Purchio, A. F.; Contag, P. R. - Title
:
- Type
:
Journal Article - Year
:
2005 - Publication
:
Mol Imaging - Products
:
- Volume
:
4 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals, Diagnostic Imaging, Disease Models, Animal, Female, Luminescent Measurements/methods, Meningitis, Pneumococcal/drug therapy/microbiology/ radiography, Mice, Mice, Inbred BALB C, Streptococcus pneumoniae/drug effects IVIS, Xenogen, Xen10 - Abstract
:
Noninvasive real-time in vivo bioluminescent imaging was used to assess the spread of Streptococcus pneumoniae throughout the spinal cord and brain during the acute stages of bacterial meningitis. A mouse model was established by lumbar (LP) or intracisternal (IC) injection of bioluminescent S. pneumoniae into the subarachnoid space. Bacteria replicated initially at the site of inoculation and spread progressively from the spinal cord to the brain or from the brain down to the cervical part of the spinal column and to the lower vertebral levels. After 24 hr, animals showed strong bioluminescent signals throughout the spinal canal, indicating acute meningitis of the intracranial and intraspinal meninges. A decline in bacterial cell viability, as judged by a reduction in the bioluminescent signal, was observed over time in animals treated with ceftriaxone, but not in untreated groups. Mice treated with the antibiotic survived infection, whereas all mice in untreated groups became moribund, first in the IC group then in the LP group. No untreated animal survived beyond 48 hr after induction of infection. Colony counts of infected cerebrospinal fluid (CSF) correlated positively with bioluminescent signals. This methodology is especially appealing because it allows detecting infected mice as early as 3 hr after inoculation, provide temporal, sequential, and spatial distribution of bacteria within the brain and spinal cord throughout the entire disease process and the rapid monitoring of treatment efficacy in a nondestructive manner. Moreover, it avoids the need to sacrifice the animals for CSF sampling and the potential manipulative damage that can occur with other conventional methods. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/16105511 - Call Number
:
139330 - Serial
:
7143
- Author
-
- Author
:
Srivastava, Amit; Henneke, Philipp; Visintin, Alberto; Morse, Sarah C; Martin, Victoria; Watkins, Claire; Paton, James C; Wessels, Michael R; Golenbock, Douglas T; Malley, Richard - Title
:
- Type
:
Journal Article - Year
:
2005 - Publication
:
Infection and immunity - Products
:
- Volume
:
73 - Issue
:
10 - Page Numbers
:
6479-6487 - Research Area : N/A
- Keywords
:
Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Bacterial Proteins; Caspases; Lipopolysaccharides; Macrophages; Mice; Mice, Inbred Strains; Nasopharynx; Pneumococcal Infections; Streptococcus pneumoniae; Streptolysins; Xen10 - Abstract
:
Pneumolysin, the cholesterol-dependent cytolysin of Streptococcus pneumoniae, induces inflammatory and apoptotic events in mammalian cells. Toll-like receptor 4 (TLR4) confers resistance to pneumococcal infection via its interaction with pneumolysin, but the underlying mechanisms remain to be identified. In the present study, we found that pneumolysin-induced apoptosis is also mediated by TLR4 and confers protection against invasive disease. The interaction between TLR4 and pneumolysin is direct and specific; ligand-binding studies demonstrated that pneumolysin binds to TLR4 but not to TLR2. Involvement of TLR4 in pneumolysin-induced apoptosis was demonstrated in several complementary experiments. First, macrophages from wild-type mice were significantly more prone to pneumolysin-induced apoptosis than cells from TLR4-defective mice. In gain-of-function experiments, we found that epithelial cells expressing TLR4 and stimulated with pneumolysin were more likely to undergo apoptosis than cells expressing TLR2. A specific TLR4 antagonist, B1287, reduced pneumolysin-mediated apoptosis in wild-type cells. This apoptotic response was also partially caspase dependent as preincubation of cells with the pan-caspase inhibitor zVAD-fmk reduced pneumolysin-induced apoptosis. Finally, in a mouse model of pneumococcal infection, pneumolysin-producing pneumococci elicited significantly more upper respiratory tract cell apoptosis in wild-type mice than in TLR4-defective mice, and blocking apoptosis by administration of zVAD-fmk to wild-type mice resulted in a significant increase in mortality following nasopharyngeal pneumococcal exposure. Overall, our results strongly suggest that protection against pneumococcal disease is dependent on the TLR4-mediated enhancement of pneumolysin-induced apoptosis. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/16177320 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
10001
- Author
-
- Author
:
Kadurugamuwa, J. L.; Modi, K.; Coquoz, O.; Rice, B.; Smith, S.; Contag, P. R.; Purchio, T. - Title
:
- Type
:
Journal Article - Year
:
2005 - Publication
:
Infection and Immunity - Products
:
- Volume
:
73 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
IVIS, Xenogen, Xen10 - Abstract
:
We developed a method for simultaneous in vivo biophotonic monitoring of pneumococcal meningitis and the accompanying neuronal injury in live transgenic mice. Streptococcus pneumoniae engineered for bioluminescence (lux) was used for direct visualization of disease progression and antibiotic treatment in a mouse model of meningitis. The host response was monitored in transgenic mice containing an inducible firefly luciferase (luc) reporter gene under transcriptional control of the mouse glial fibrillary acidic protein (GFAP) promoter. Based on the different spectra of light emission and substrate requirements for lux and luc, we were able to separately monitor the two reporters using a highly sensitive in vivo imaging system. The level of neuronal damage and recovery following antibiotic treatment was dependent on the time of treatment. This model has potential for simultaneous multiparameter monitoring and testing of therapies that target the pathogen or host response to prevent neuronal injury and recovery. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/16299273 - Call Number
:
139327 - Serial
:
7497
- Author
-
- Author
:
Park, H. S.; Cleary, P. P. - Title
:
- Type
:
Journal Article - Year
:
2005 - Publication
:
Infection and Immunity - Products
:
- Volume
:
73 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
IVIS, Xenogen, Xen20 - Abstract
:
C5a peptidase, also called SCPA (surface-bound C5a peptidase), is a surface-bound protein on group A streptococci (GAS), etiologic agents for a variety of human diseases including pharyngitis, impetigo, toxic shock, and necrotizing fasciitis, as well as the postinfection sequelae rheumatic fever and rheumatic heart disease. This protein is highly conserved among different serotypes and is also expressed in human isolates of group B, C, and G streptococci. Human tonsils are the primary reservoirs for GAS, maintaining endemic disease across the globe. We recently reported that GAS preferentially target nasal mucosa-associated lymphoid tissue (NALT) in mice, a tissue functionally analogous to human tonsils. Experiments using a C5a peptidase loss-of-function mutant and an intranasal infection model showed that this protease is required for efficient colonization of NALT. An effective vaccine should prevent infection of this secondary lymphoid tissue; therefore, the potential of anti-SCPA antibodies to protect against streptococcal infection of NALT was investigated. Experiments showed that GAS colonization of NALT was significantly reduced following intranasal immunization of mice with recombinant SCPA protein administered alone or with cholera toxin, whereas a high degree of GAS colonization of NALT was observed in control mice immunized with phosphate-buffered saline only. Moreover, administration of anti-SCPA serum by the intranasal route protected mice against streptococcal infection. These results suggest that intranasal immunization with SCPA would prevent colonization and infection of human tonsils, thereby eliminating potential reservoirs that maintain endemic disease. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/16299278 - Call Number
:
141964 - Serial
:
5327
- Author
-
- Author
:
Schwan, William R; Lehmann, Lynn; McCormick, James - Title
:
- Type
:
Journal Article - Year
:
2006 - Publication
:
Infection and immunity - Products
:
- Volume
:
74 - Issue
:
1 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Amino Acid Transport Systems, Neutral; Animals; Bacterial Proteins; Bioware; Blotting, Northern; Disease Models, Animal; Gene Expression Regulation, Bacterial; Humans; Lac Operon; Mice; Osmolar Concentration; Proline; pXen-5; Recombinant Fusion Proteins; Staphylococcal Infections; Staphylococcus aureus; Symporters; Transcriptional Activation - Abstract
:
Staphylococcus aureus can grow virtually anywhere in the human body but needs to import proline through low- and high-affinity proline transporters to survive. This study examined the regulation of the S. aureus putP gene, which encodes a high-affinity proline permease. putP::lacZ and putP::lux transcriptional fusions were constructed and integrated into the genomes of several S. aureus strains. Enzyme activity was measured after growth in media with various osmolyte concentrations. As osmolarity rose, putP expression increased, with a plateau at 2 M for NaCl in strain LL3-1. Proline concentrations as low as 17.4 muM activated expression of the putP gene. The putP::lux fusion was also integrated into the genomes of S. aureus strains that were either SigB inactive (LL3-1, 8325-4, and SH1003) or SigB active (Newman and SH1000). SigB inactive strains showed increased putP gene expression as NaCl concentrations rose, whereas SigB active strains displayed a dramatic decrease in putP expression, suggesting that the alternative sigma factor B plays a negative role in putP regulation. Mice inoculated with S. aureus strains containing the putP::lux fusion exhibited up to a 715-fold increase in putP expression, although levels in the various murine organs differed. Moreover, urine from human patients infected with S. aureus showed elevated putP levels by use of a PCR procedure, whereas blood and some abscess material had no significant increase. Thus, putP is transcriptionally activated by a low-proline and high osmotic environment both in growth media and in murine or human clinical specimens. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/16368996 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9023
- Author
-
- Author
:
Bisland, Stuart K; Chien, Claudia; Wilson, Brian C; Burch, Shane - Title
:
- Type
:
Journal Article - Year
:
2006 - Publication
:
Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology - Products
:
- Volume
:
5 - Issue
:
1 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Aminolevulinic Acid; Animals; Biofilms; Bioware; Cell Survival; Disease Models, Animal; Drug Evaluation, Preclinical; Female; Implants, Experimental; Light; Luminescent Measurements; Methylene Blue; Osteomyelitis; Photochemotherapy; Photosensitizing Agents; Rats; Rats, Sprague-Dawley; Staphylococcus aureus; Xen29 - Abstract
:
Osteomyelitis can lead to severe morbidity and even death resulting from an acute or chronic inflammation of the bone and contiguous structures due to fungal or bacterial infection. Incidence approximates 1 in 1000 neonates and 1 in 5000 children in the United States annually and increases up to 0.36% and 16% in adults with diabetes or sickle cell anaemia, respectively. Current regimens of treatment include antibiotics and/or surgery. However, the increasing number of antibiotic resistant pathogens suggests that alternate strategies are required. We are investigating photodynamic therapy (PDT) as one such alternate treatment for osteomyelitis using a bioluminescent strain of biofilm-producing staphylococcus aureus (S. aureus) grown onto kirschner wires (K-wire). S. aureus-coated K-wires were exposed to methylene blue (MB) or 5-aminolevulinic acid (ALA)-mediated PDT either in vitro or following implant into the tibial medullary cavity of Sprague-Dawley rats. The progression of S. aureus biofilm was monitored non-invasively using bioluminescence and expressed as a percentage of the signal for each sample immediately prior to treatment. S. aureus infections were subject to PDT 10 days post inoculation. Treatment comprised administration of ALA (300 mg kg(-1)) intraperitoneally followed 4 h later by light (635 +/- 10 nm; 75 J cm(-2)) delivered transcutaneously via an optical fiber placed onto the tibia and resulted in significant delay in bacterial growth. In vitro, MB and ALA displayed similar cell kill with > or =4 log(10) cell kill. In vivo, ALA-mediated PDT inhibited biofilm implants in bone. These results confirm that MB or ALA-mediated PDT have potential to treat S. aureus cultures grown in vitro or in vivo using an animal model of osteomyelitis. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/16395425 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9054
- Author
-
- Author
:
Mann, B.; Orihuela, C.; Antikainen, J.; Gao, G.; Sublett, J.; Korhonen, T. K.; Tuomanen, E. - Title
:
- Type
:
Journal Article - Year
:
2006 - Publication
:
Infection and Immunity - Products
:
- Volume
:
74 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
IVIS, Xenogen, Xen7 - Abstract
:
Members of the choline binding protein (Cbp) family are noncovalently bound to phosphorylcholine residues on the surface of Streptococcus pneumoniae. It has been suggested that CbpG plays a role in adherence and increase virulence both at the mucosal surface and in the bloodstream, but the function of this protein has been unclear. A new sequence analysis indicated that CbpG is a possible member of the S1 family of multifunctional surface-associated serine proteases. Clinical isolates contained two alleles of cbpG, and one-third of the strains expressed a truncated protein lacking the C-terminal, cell wall-anchoring choline binding domain. CbpG on the surface of pneumococci (full length) or released into the supernatant (truncated) showed proteolytic activity for fibronectin and casein, as did CbpG expressed on lactobacilli or as a purified full-length or truncated recombinant protein. Recombinant CbpG (rCbpG)-coated beads adhered to eukaryotic cells, and TIGR4 mutants lacking CbpG or having a truncated CbpG protein showed decreased adherence in vitro and attenuation of disease in mouse challenge models of colonization, pneumonia, and bacteremia. Immunization with rCbpG was protective in an animal model of colonization and sepsis. We propose that CbpG is a multifunctional surface protein that in the cell-attached or secreted form cleaves host extracellular matrix and in the cell-attached form participates in bacterial adherence. This is the first example of distinct functions in virulence that are dependent on natural variation in expression of a choline binding domain. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/16428724 - Call Number
:
140887 - Serial
:
6992
- Author
-
- Author
:
Hardy, Jonathan; Margolis, Jeffrey J; Contag, Christopher H - Title
:
- Type
:
Journal Article - Year
:
2006 - Publication
:
Infection and immunity - Products
:
- Volume
:
74 - Issue
:
3 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Bacterial Toxins; Biliary Tract; Bioware; Feces; Food Contamination; Intestines; Listeria monocytogenes; Listeriosis; Mice; Mice, Inbred BALB C; pXen-5 - Abstract
:
Listeria monocytogenes is a ubiquitous gram-positive bacterium that can cause systemic and often life-threatening disease in immunocompromised hosts. This organism is largely an intracellular pathogen; however, we have determined that it can also grow extracellularly in animals, in the lumen of the gallbladder. The significance of growth in the gallbladder with respect to the pathogenesis and spread of listeriosis depends on the ability of the bacterium to leave this organ and be disseminated to other tissues and into the environment. Should this process be highly inefficient, growth in the gallbladder would have no impact on pathogenesis or spread, but if it occurs efficiently, bacterial growth in this organ may contribute to listeriosis and dissemination of this organism. Here, we use whole-body imaging to determine the efficacy and kinetics of food- and hormone-induced biliary excretion of L. monocytogenes from the murine gallbladder, demonstrating that transit through the bile duct into the intestine can occur within 5 min of induction of gallbladder contraction by food or cholecystokinin and that movement of bacteria through the intestinal lumen can occur very rapidly in the absence of fecal material. These studies demonstrate that L. monocytogenes bacteria replicating in the gallbladder can be expelled from the organ efficiently and that the released bacteria move into the intestinal tract, where they pass into the environment and may possibly reinfect the animal. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/16495556 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
9024
- Author