1. Resources
  2. Citations Library

Headers act as filters

  • Records
      1. Author :
        Swirski, F. K.; Nahrendorf, M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Immunol Cell Biol
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        AngioSense
      12. Abstract :
        Macrophages are central regulators of disease progression in both atherosclerosis and myocardial infarction (MI). In atherosclerosis, macrophages are the dominant leukocyte population that influences lesional development. In MI, which is caused by atherosclerosis, macrophages accumulate readily and have important roles in inflammation and healing. Molecular imaging has grown considerably as a field and can reveal biological process at the molecular, cellular and tissue levels. Here, we explore how various imaging modalities, from intravital microscopy in mice to organ-level imaging in patients, are contributing to our understanding of macrophages and their progenitors in cardiovascular disease.Immunology and Cell Biology advance online publication, 4 December 2012; doi:10.1038/icb.2012.72.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23207281
      14. Call Number :
        PKI @ kd.modi @ 12
      15. Serial :
        10441
      1. Author :
        Liu, R.; Gilmore, D. M.; Zubris, K. A.; Xu, X.; Catalano, P. J.; Padera, R. F.; Grinstaff, M. W.; Colson, Y. L.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2013
      5. Publication :
        Biomaterials
      6. Products :
      7. Volume :
        34
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-luc-D3H2Ln, D3H2Ln, Bioware, IVIS
      12. Abstract :
        Although breast cancer patients with localized disease exhibit an excellent long-term prognosis, up to 40% of patients treated with local resection alone may harbor occult nodal metastatic disease leading to increased locoregional recurrence and decreased survival. Given the potential for targeted drug delivery to result in more efficacious locoregional control with less morbidity, the current study assessed the ability of drug-loaded polymeric expansile nanoparticles (eNP) to migrate from the site of tumor to regional lymph nodes, locally deliver a chemotherapeutic payload, and prevent primary tumor growth as well as lymph node metastases. Expansile nanoparticles entered tumor cells and paclitaxel-loaded eNP (Pax-eNP) exhibited dose-dependent cytotoxicity in vitro and significantly decreased tumor doubling time in vivo against human triple negative breast cancer in both microscopic and established murine breast cancer models. Furthermore, migration of Pax-eNP to axillary lymph nodes resulted in higher intranodal paclitaxel concentrations and a significantly lower incidence of lymph node metastases. These findings demonstrate that lymphatic migration of drug-loaded eNP provides regionally targeted delivery of chemotherapy to both decrease local tumor growth and strategically prevent the development of nodal metastases within the regional tumor-draining lymph node basin.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23228419
      14. Call Number :
        PKI @ kd.modi @ 8
      15. Serial :
        10506
      1. Author :
        Kwong, G. A.; von Maltzahn, G.; Murugappan, G.; Abudayyeh, O.; Mo, S.; Papayannopoulos, I. A.; Sverdlov, D. Y.; Liu, S. B.; Warren, A. D.; Popov, Y.; Schuppan, D.; Bhatia, S. N.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Nat Biotechnol
      6. Products :
      7. Volume :
        31
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        VivoTag, IVIS, Vivotag
      12. Abstract :
        Biomarkers are becoming increasingly important in the clinical management of complex diseases, yet our ability to discover new biomarkers remains limited by our dependence on endogenous molecules. Here we describe the development of exogenously administered 'synthetic biomarkers' composed of mass-encoded peptides conjugated to nanoparticles that leverage intrinsic features of human disease and physiology for noninvasive urinary monitoring. These protease-sensitive agents perform three functions in vivo: they target sites of disease, sample dysregulated protease activities and emit mass-encoded reporters into host urine for multiplexed detection by mass spectrometry. Using mouse models of liver fibrosis and cancer, we show that these agents can noninvasively monitor liver fibrosis and resolution without the need for invasive core biopsies and substantially improve early detection of cancer compared with current clinically used blood biomarkers. This approach of engineering synthetic biomarkers for multiplexed urinary monitoring should be broadly amenable to additional pathophysiological processes and point-of-care diagnostics.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23242163
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10567
      1. Author :
        Gule, N. P.; de Kwaadsteniet, M.; Cloete, T. E.; Klumperman, B.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Water Res
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen5, Xen39, Xen26, Xen14, Xen36, Xen 5, Xen 39, Xen 26, Xen 14, Xen 36, Psuedomonas aeruginosa, S. aureus, Klebsiella, E. coli, Salmonella,
      12. Abstract :
        The 3(2H) furanone derivative 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) was investigated for its antimicrobial and cell-adhesion inhibition properties against Klebsiella pneumoniae Xen 39, Staphylococcus aureus Xen 36, Escherichia coli Xen 14, Pseudomonas aeruginosa Xen 5 and Salmonella typhimurium Xen 26. Nanofibers electrospun from solution blends of DMHF and poly(vinyl alcohol) (PVA) were tested for their ability to inhibit surface-attachment of bacteria. Antimicrobial and adhesion inhibition activity was determined via the plate counting technique. To quantify viable but non-culturable cells and to validate the plate counting results, bioluminescence and fluorescence studies were carried out. Nanofiber production was upscaled using the bubble electrospinning technique. To ascertain that no DMHF leached into filtered water, samples of water filtered through the nanofibrous mats were analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Scanning electron microscopy (SEM) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to characterize the electrospun nanofibers.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23261340
      14. Call Number :
        PKI @ kd.modi @ 7
      15. Serial :
        10548
      1. Author :
        Gule, N. P.; de Kwaadsteniet, M.; Cloete, T. E.; Klumperman, B.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Water Res
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen5, Xen39, Xen26, Xen14, Xen36, Xen 5, Xen 39, Xen 26, Xen 14, Xen 36, Psuedomonas aeruginosa, S. aureus, Klebsiella, E. coli, Salmonella,
      12. Abstract :
        The 3(2H) furanone derivative 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) was investigated for its antimicrobial and cell-adhesion inhibition properties against Klebsiella pneumoniae Xen 39, Staphylococcus aureus Xen 36, Escherichia coli Xen 14, Pseudomonas aeruginosa Xen 5 and Salmonella typhimurium Xen 26. Nanofibers electrospun from solution blends of DMHF and poly(vinyl alcohol) (PVA) were tested for their ability to inhibit surface-attachment of bacteria. Antimicrobial and adhesion inhibition activity was determined via the plate counting technique. To quantify viable but non-culturable cells and to validate the plate counting results, bioluminescence and fluorescence studies were carried out. Nanofiber production was upscaled using the bubble electrospinning technique. To ascertain that no DMHF leached into filtered water, samples of water filtered through the nanofibrous mats were analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Scanning electron microscopy (SEM) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to characterize the electrospun nanofibers.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23261340
      14. Call Number :
        PKI @ kd.modi @ 8
      15. Serial :
        10549
      1. Author :
        Zuluaga, M. F.; Sekkat, N.; Gabriel, D.; van den Bergh, H.; Lange, N.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Mol Cancer Ther
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        PC-3M-luc-C6, PC-3M-luc, IVIS, Bioware, Prostate cancer, Bioluminescence
      12. Abstract :
        Frequent side effects of radical treatment modalities and the availability of novel diagnostics have raised the interest in focal therapies for localized prostate cancer. To improve the selectivity and therapeutic efficacy of such therapies, we developed a minimally invasive procedure, based on a novel polymeric photosensitizer prodrug sensitive to urokinase-like plasminogen activator (uPA). The compound is inactive in its prodrug form and accumulates passively at the tumor site by the enhanced permeability and retention effect. There, the prodrug is selectively converted to its photoactive form by uPA which is over-expressed by prostate cancer cells. Irradiation of the activated photosensitizer exerts a tumor-selective phototoxic effect. The prodrug alone (8 microM) showed no toxic effect on PC-3 cells, but upon irradiation the cell viability was reduced by 90%. In vivo, after systemic administration of the prodrug, PC-3 xenografts became selectively fluorescent. This is indicative of the prodrug accumulation in the tumor and selective local enzymatic activation. Qualitative analysis of the activated compound confirmed that the enzymatic cleavage occurred selectively in the tumor, with only trace amounts in the neighboring skin or muscle. Subsequent photodynamic therapy studies demonstrated complete tumor eradication of animals treated with light (150 J/cm2 at 665 nm) 16 hours after the injection of the prodrug (7.5 mg/kg). These promising results evidence the excellent selectivity of our prodrug with the potential to be used for both, imaging and therapy of localized prostate cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23270928
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10542
      1. Author :
        Hjortnaes, J.; New, S. E.; Aikawa, E.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2013
      5. Publication :
        Trends Cardiovasc Med
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        OsteoSense
      12. Abstract :
        Cardiovascular calcification is currently viewed as an active disease process similar to embryonic bone formation. Cardiovascular calcification mainly affects the aortic valve and arteries and is associated with increased mortality risk. Aortic valve and arterial calcification share similar risk factors, including age, gender, diabetes, chronic renal disease, and smoking. However, the exact cellular and molecular mechanism of cardiovascular calcification is unknown. Late-stage cardiovascular calcification can be visualized with conventional imaging modalities such as echocardiography and computed tomography. However, these modalities are limited in their ability to detect the development of early calcification and the progression of calcification until advanced tissue mineralization is apparent. Due to the subsequent late diagnosis of cardiovascular calcification, treatment is usually comprised of invasive interventions such as surgery. The need to understand the process of calcification is therefore warranted and requires new imaging modalities which are able to visualize early cardiovascular calcification. This review focuses on the use of new imaging techniques to visualize novel concepts of cardiovascular calcification.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23290463
      14. Call Number :
        PKI @ kd.modi @ 8
      15. Serial :
        10470
      1. Author :
        Tanaka, M.; Mroz, P.; Dai, T.; Huang, L.; Morimoto, Y.; Kinoshita, M.; Yoshihara, Y.; Shinomiya, N.; Seki, S.; Nemoto, K.; Hamblin, M. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2013
      5. Publication :
        Photochem Photobiol
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence
      12. Abstract :
        We previously reported that photodynamic therapy (PDT) using intra-articular methylene blue (MB) could be used to treat arthritis in mice caused by bioluminescent methicillin-resistant Staphylococcus aureus (MRSA) either in a therapeutic or in a preventative mode. PDT accumulated neutrophils into the mouse knee via activation of chemoattractants such as inflammatory cytokines or chemokines. In the present study, we asked whether PDT combined with antibiotics used for MRSA could provide added benefit in controlling the infection. We compared MB-PDT alone, systemic administration of either linezolid (LZD) alone or vancomycin (VCM) alone or the combination of PDT with either LZD or VCM. Real-time non-invasive imaging was used to serially follow the progress of the infection. PDT alone was the most effective, while LZD alone was ineffective and VCM alone showed some benefit. Surprisingly the addition of LZD or VCM reduced the therapeutic effect of PDT alone (P<0.05). Considering that PDT in this mouse model stimulates neutrophils to be antibacterial rather than actively killing the bacteria, we propose that LZD and VCM might inhibit the activation of inflammatory cytokines without eradicating the bacteria, and thereby reduce the therapeutic effect of PDT. (c) 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology (c) 2013 The American Society of Photobiology.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23311407
      14. Call Number :
        PKI @ kd.modi @ 6
      15. Serial :
        10558
      1. Author :
        Yamaoka, Ippei; Kikuchi, Takeshi; Endo, Naoyuki; Ebisu, Goro
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2014
      5. Publication :
        BMC gastroenterology
      6. Products :
      7. Volume :
        14
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        BALB/c CrSlc mice; enteral nutrition; Ex vivo; Gastrosense 750; Hine® E-gel; in vivo; IVIS® Spectrum; Nev11121; pectin
      12. Abstract :
        BACKGROUND: Semi-solidification by gelation or increased viscosity could slow the influx of liquid enteral nutrition (EN) into the small intestine. A liquid EN formula containing pectin that gels under acidic conditions such as those found in the stomach has been developed. A new near-infrared fluorescent imaging reagent was used to non-invasively acquire real time images of gastric emptying in a murine model in vivo. We postulated that the EN formula delays gastric emptying and tested this hypothesis using imaging in vivo.
        METHODS: Male BALB/c mice were given an oral bolus injection of a liquid EN containing the fluorescence reagent GastroSense750 with or without pectin. The EN in the stomach was visualized in vivo at various intervals using a non-invasive live imaging system and fluorescent signals were monitored from the stomach, which was removed at 60 min after EN ingestion.
        RESULTS: The fluorescence intensity of signals in stomachs in vivo and in resected stomachs was lower and attenuated over time in mice given EN without, than with pectin.
        CONCLUSIONS: Adding a gelling agent such as pectin delayed the transit of liquid EN from the stomach. Fluorescence imaging can visualize the delayed gastric emptying of EN containing pectin.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/25263497
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        11641