1. Resources
  2. Citations Library

Headers act as filters

  • Records
      1. Author :
        Bratlie, K. M.; Dang, T. T.; Lyle, S.; Nahrendorf, M.; Weissleder, R.; Langer, R.; Anderson, D. G.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        5
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Prosense, IVIS, Animals; Biocompatible Materials/*diagnostic use; Diagnostic Imaging/*methods; *Fluorescence; Macrophage Activation; Materials Testing/*methods; Mice; Models, Animal; Peptide Hydrolases/metabolism; Phagocytes
      12. Abstract :
        BACKGROUND: Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop rapid, non-invasive methods for in vivo quantification of the inflammatory response to implanted biomaterials. Materials were placed subcutaneously in an array format and monitored for host responses as per ISO 10993-6: 2001. Host cell activity in response to these materials was imaged kinetically, in vivo using fluorescent whole animal imaging. Data captured using whole animal imaging displayed similar temporal trends in cellular recruitment of phagocytes to the biomaterials compared to histological analysis. CONCLUSIONS/SIGNIFICANCE: Histological analysis similarity validates this technique as a novel, rapid approach for screening biocompatibility of implanted materials. Through this technique there exists the possibility to rapidly screen large libraries of polymers in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20386609
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10427
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Annals of the New York Academy of Sciences
      6. Products :
      7. Volume :
        1192
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Biofilms; Bioware; Bone Density Conservation Agents; Chronic Disease; Cytokines; Drug Evaluation, Preclinical; Humans; Immunity; Incidence; Jaw Diseases; Mice; Neovascularization, Physiologic; Osteoclasts; Osteomyelitis; Osteonecrosis; Staphylococcal Infections; Xen29
      12. Abstract :
        The effects of antiresorptive agents (e.g., alendronate [Aln], osteoprotegerin [OPG]) on bone infection are unknown. Thus, their effects on implant-associated osteomyelitis (OM) were investigated in mice using PBS (placebo), gentamycin, and etanercept (TNFR:Fc) controls. None of the drugs affected humoral immunity, angiogenesis, or chronic infection. However, the significant (P < 0.05 vs. PBS) inhibition of cortical osteolysis and decreased draining lymph node size in Aln- and OPG-treated mice was associated with a significant (P < 0.05) increase in the incidence of high-grade infections during the establishment of OM. In contrast, the high-grade infections in TNFR:Fc-treated mice were associated with immunosuppression, as evidenced by the absence of granulomas and presence of Gram(+) biofilm in the bone marrow. Collectively, these findings indicate that although antiresorptive agents do not exacerbate chronic OM, they can increase the bacterial load during early infection by decreasing lymphatic drainage and preventing the removal of necrotic bone that harbors the bacteria.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20392222
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9034
      1. Author :
        Xu, Xiulan; Miller, Sally A; Baysal-Gurel, Fulya; Gartemann, Karl-Heinz; Eichenlaub, Rudolf; Rajashekara, Gireesh
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Applied and environmental microbiology
      6. Products :
      7. Volume :
        76
      8. Issue :
        12
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Actinomycetales; Bioware; Genes, Reporter; Genetic Engineering; Luminescent Proteins; Lycopersicon esculentum; Mirabilis; Plant Diseases; pXen-13; Recombinant Proteins; Seeds; Staining and Labeling
      12. Abstract :
        Clavibacter michiganensis subsp. michiganensis is a Gram-positive bacterium that causes wilting and cankers, leading to severe economic losses in commercial tomato production worldwide. The disease is transmitted from infected seeds to seedlings and mechanically from plant to plant during seedling production, grafting, pruning, and harvesting. Because of the lack of tools for genetic manipulation, very little is known regarding the mechanisms of seed and seedling infection and movement of C. michiganensis subsp. michiganensis in grafted plants, two focal points for application of bacterial canker control measures in tomato. To facilitate studies on the C. michiganensis subsp. michiganensis movement in tomato seed and grafted plants, we isolated a bioluminescent C. michiganensis subsp. michiganensis strain using the modified Tn1409 containing a promoterless lux reporter. A total of 19 bioluminescent C. michiganensis subsp. michiganensis mutants were obtained. All mutants tested induced a hypersensitive response in Mirabilis jalapa and caused wilting of tomato plants. Real-time colonization studies of germinating seeds using a virulent, stable, constitutively bioluminescent strain, BL-Cmm17, showed that C. michiganensis subsp. michiganensis aggregated on hypocotyls and cotyledons at an early stage of germination. In grafted seedlings in which either the rootstock or scion was exposed to BL-Cmm17 via a contaminated grafting knife, bacteria were translocated in both directions from the graft union at higher inoculum doses. These results emphasize the use of bioluminescent C. michiganensis subsp. michiganensis to help better elucidate the C. michiganensis subsp. michiganensis-tomato plant interactions. Further, we demonstrated the broader applicability of this tool by successful transformation of C. michiganensis subsp. nebraskensis with Tn1409::lux. Thus, our approach would be highly useful to understand the pathogenesis of diseases caused by other subspecies of the agriculturally important C. michiganensis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20400561
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9028
      1. Author :
        Krespi, Y. P.; Kizhner, V.; Nistico, L.; Hall-Stoodley, L.; Stoodley, P.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Am J Otolaryngol
      6. Products :
      7. Volume :
        32
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Biofilms/drug effects/*radiation effects; Ciprofloxacin/*pharmacology; Culture Media; High-Energy Shock Waves; Humans; *Laser Therapy, Low-Level; Methicillin-Resistant Staphylococcus aureus/*growth &; development/physiology/*radiation effects; Microbial Sensitivity Tests; Reference Values; Sensitivity and Specificity; Spectroscopy, Near-Infrared; Staphylococcal Infections/drug therapy
      12. Abstract :
        OBJECTIVE: The aim of the study was to study the efficacy of 2 different lasers in vitro, in disrupting biofilm and killing planktonic pathogenic bacteria. MATERIALS AND METHODS: Biofilms of a stable bioluminescent of Staphylococcus aureus Xen 31 were grown in a 96-well microtiter plate for 3 days. The study included 7 arms: (a) control; (b) ciprofloxacin (3 mg/L, the established minimum inhibitory concentration [MIC]) alone; (c) shock wave (SW) laser alone; (d) near-infrared (NIR) laser alone; (e) SW laser and ciprofloxacin; (f) SW and NIR lasers; (g) SW, NIR lasers, and ciprofloxacin. The results were evaluated with an in vivo imaging system (IVIS) biophotonic system (for live bacteria) and optical density (OD) for total bacteria. RESULTS: Without antibiotics, there was a 43% reduction in OD (P < .05) caused by the combination of SW and NIR suggesting that biofilm had been disrupted. There was an 88% reduction (P < .05) in live biofilm. Ciprofloxacin alone resulted in a decrease of 28% of total live cells (biofilm remaining attached) and 58% of biofilm cells (both P > .05). Ciprofloxacin in combination with SW and SW + NIR lasers caused a decrease of more than 60% in total live biomass and more than 80% of biofilm cells, which was significantly greater than ciprofloxacin alone (P < .05). CONCLUSIONS: We have demonstrated an effective nonpharmacologic treatment method for methicillin-resistant Staphylococcus aureus (MRSA) biofilm disruption and killing using 2 different lasers. The preferred treatment sequence is a SW laser disruption of biofilm followed by NIR laser illumination. Treatment optimization of biofilm is possible with the addition of ciprofloxacin in concentrations consistent with planktonic MIC.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20434806
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10554
      1. Author :
        Snoeks, T. J.; Lowik, C. W.; Kaijzel, E. L.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Angiogenesis
      6. Products :
      7. Volume :
        13
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense,, Animals; Diagnostic Imaging/*methods; Fluorescent Dyes/metabolism; Genes, Reporter; Neovascularization, Pathologic/*diagnosis; *Optical Phenomena
      12. Abstract :
        In recent years, molecular imaging gained significant importance in biomedical research. Optical imaging developed into a modality which enables the visualization and quantification of all kinds of cellular processes and cancerous cell growth in small animals. Novel gene reporter mice and cell lines and the development of targeted and cleavable fluorescent “smart” probes form a powerful imaging toolbox. The development of systems collecting tomographic bioluminescence and fluorescence data enabled even more spatial accuracy and more quantitative measurements. Here we describe various bioluminescent and fluorescent gene reporter models and probes that can be used to specifically image and quantify neovascularization or the angiogenic process itself.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20449766
      14. Call Number :
        PKI @ kd.modi @ 10
      15. Serial :
        10379
      1. Author :
        Chantry, A. D.; Heath, D.; Mulivor, A. W.; Pearsall, S.; Baud'huin, M.; Coulton, L.; Evans, H.; Abdul, N.; Werner, E. D.; Bouxsein, M. L.; Key, M. L.; Seehra, J.; Arnett, T. R.; Vanderkerken, K.; Croucher, P.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        J Bone Miner Res
      6. Products :
      7. Volume :
        25
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-D3H2Ln, IVIS, Bioluminescence, Activins/*metabolism; Animals; Bone Neoplasms/*complications/pathology/physiopathology/secondary; Bone Resorption/*etiology/pathology/physiopathology/*prevention & control; Calcification, Physiologic/drug effects; Cell Line, Tumor; HEK293 Cells; Humans; Mice; Multiple Myeloma/complications/pathology/physiopathology; Neoplasm Transplantation; Organ Size/drug effects; Osteoblasts/drug effects/pathology; *Osteogenesis/drug effects; Osteolysis/blood/complications/physiopathology/prevention & control; Paraproteins/metabolism; Recombinant Fusion Proteins/pharmacology; *Signal Transduction/drug effects; Survival Analysis; Tumor Burden/drug effects
      12. Abstract :
        Cancers that grow in bone, such as myeloma and breast cancer metastases, cause devastating osteolytic bone destruction. These cancers hijack bone remodeling by stimulating osteoclastic bone resorption and suppressing bone formation. Currently, treatment is targeted primarily at blocking bone resorption, but this approach has achieved only limited success. Stimulating osteoblastic bone formation to promote repair is a novel alternative approach. We show that a soluble activin receptor type IIA fusion protein (ActRIIA.muFc) stimulates osteoblastogenesis (p < .01), promotes bone formation (p < .01) and increases bone mass in vivo (p < .001). We show that the development of osteolytic bone lesions in mice bearing murine myeloma cells is caused by both increased resorption (p < .05) and suppression of bone formation (p < .01). ActRIIA.muFc treatment stimulates osteoblastogenesis (p < .01), prevents myeloma-induced suppression of bone formation (p < .05), blocks the development of osteolytic bone lesions (p < .05), and increases survival (p < .05). We also show, in a murine model of breast cancer bone metastasis, that ActRIIA.muFc again prevents bone destruction (p < .001) and inhibits bone metastases (p < .05). These findings show that stimulating osteoblastic bone formation with ActRIIA.muFc blocks the formation of osteolytic bone lesions and bone metastases in models of myeloma and breast cancer and paves the way for new approaches to treating this debilitating aspect of cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20533325
      14. Call Number :
        PKI @ kd.modi @ 4
      15. Serial :
        10413
      1. Author :
        Keereweer, S.; Kerrebijn, J. D.; van Driel, P. B.; Xie, B.; Kaijzel, E. L.; Snoeks, T. J.; Que, I.; Hutteman, M.; van der Vorst, J. R.; Mieog, J. S.; Vahrmeijer, A. L.; van de Velde, C. J.; Baatenburg de Jong, R. J.; Lowik, C. W.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Mol Imaging Biol
      6. Products :
      7. Volume :
        13
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense,Animals; Fluorescent Dyes/metabolism; Humans; Nanoparticles/diagnostic use; Optics and Photonics/*methods; Surgery, Computer-Assisted/*methods
      12. Abstract :
        In cancer surgery, intra-operative assessment of the tumor-free margin, which is critical for the prognosis of the patient, relies on the visual appearance and palpation of the tumor. Optical imaging techniques provide real-time visualization of the tumor, warranting intra-operative image-guided surgery. Within this field, imaging in the near-infrared light spectrum offers two essential advantages: increased tissue penetration of light and an increased signal-to-background-ratio of contrast agents. In this article, we review the various techniques, contrast agents, and camera systems that are currently used for image-guided surgery. Furthermore, we provide an overview of the wide range of molecular contrast agents targeting specific hallmarks of cancer and we describe perspectives on its future use in cancer surgery.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20617389
      14. Call Number :
        PKI @ kd.modi @ 4
      15. Serial :
        10367
      1. Author :
        Snoeks, T. J.; Khmelinskii, A.; Lelieveldt, B. P.; Kaijzel, E. L.; Lowik, C. W.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Bone
      6. Products :
      7. Volume :
        48
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Bone Neoplasms/radionuclide imaging/*secondary; Diagnostic Imaging/*methods; Forecasting; Optics and Photonics/*trends; Positron-Emission Tomography/methods; Tomography, Emission-Computed, Single-Photon/methods; X-Ray Microtomography/methods; X-Rays
      12. Abstract :
        Optical Imaging has evolved into one of the standard molecular imaging modalities used in pre-clinical cancer research. Bone research however, strongly depends on other imaging modalities such as SPECT, PET, x-ray and muCT. Each imaging modality has its own specific strengths and weaknesses concerning spatial resolution, sensitivity and the possibility to quantify the signal. An increasing number of bone specific optical imaging models and probes have been developed over the past years. This review gives an overview of optical imaging modalities, models and probes that can be used to study skeletal complications of cancer in small laboratory animals.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20688203
      14. Call Number :
        PKI @ kd.modi @ 19
      15. Serial :
        10378