1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

451–460 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Neal K. Devaraj; Edmund J. Keliher; Greg M. Thurber; Matthias Nahrendorf; Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Bioconjugate Chemistry
      6. Products :
      7. Volume :
        20
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        in vivo imaging; fluorescence molecular tomography
      12. Abstract :
        We report the synthesis and in vivo characterization of an 18F modified trimodal nanoparticle (18F-CLIO). This particle consists of cross-linked dextran held together in core-shell formation by a superparamagnetic iron oxide core and functionalized with the radionuclide 18F in high yield via “click” chemistry. The particle can be detected with positron emission tomography, fluorescence molecular tomography, and magnetic resonance imaging. The presence of 18F dramatically lowers the detection threshold of the nanoparticles, while the facile conjugation chemistry provides a simple platform for rapid and efficient nanoparticle labeling.
      13. URL :
        http://pubs.acs.org/doi/abs/10.1021/bc8004649
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4498
      1. Author :
        Neal K. Devaraj; Ralph Weissleder; Scott A. Hilderbrand
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Bioconjugate Chemistry
      6. Products :
      7. Volume :
        19
      8. Issue :
        12
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        in vivo labelling; breast cancer; in vivo imaging
      12. Abstract :
        Bioorthogonal tetrazine cycloadditions have been applied to live cell labeling. Tetrazines react irreversibly with the strained dienophile norbornene forming dihydropyrazine products and dinitrogen. The reaction is high yielding, selective, and fast in aqueous media. Her2/neu receptors on live human breast cancer cells were targeted with a monoclonal antibody modified with a norbornene. Tetrazines conjugated to a near-infrared fluorochrome selectively and rapidly label the pretargeted antibody in the presence of serum. These findings indicate that this chemistry is suitable for in vitro labeling experiments, and suggests that it may prove a useful strategy for in vivo pretargeted imaging under numerous modalities.
      13. URL :
        http://pubs.acs.org/doi/abs/10.1021/bc8004446
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4499
      1. Author :
        Vasilis Ntziachristos
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        The Proceedings of the American Thoracic Society
      6. Products :
      7. Volume :
        6
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        Physiology
      11. Keywords :
        ProSense; FMT; fluorescence; tomography; proteases; lung; inflammation; in vivo imaging
      12. Abstract :
        Biomedical imaging has become an important tool in the study of “-omics” fields by allowing the noninvasive visualization of functional and molecular events using in vivo staining and reporter gene approaches. This capacity can go beyond the understanding of the genetic basis and phenotype of such respiratory conditions as acute bronchitis, adult respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and asthma and investigate the development of disease and of therapeutic events longitudinally and in unperturbed environments. Herein, we show how the application of novel quantitative optical imaging methods, using transillumination and fluorescence molecular tomography (FMT), can allow visualization of pulmonary inflammation in small animals in vivo. The results confirm prior observations using a protease-sensitive probe. We discuss how this approach enables in vivo insights at the system level as to the dynamic role of proteases in respiratory pathophysiology and their potential as therapeutic targets. Overall, the proposed imaging method can be used with a significantly wider range of possible targets and applications in lung imaging.
      13. URL :
        http://pats.atsjournals.org/cgi/content/full/6/5/416
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4534
      1. Author :
        Kenneth M Kozloff, Ralph Weissleder and Umar Mahmood
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Journal of Bone and Mineral Research
      6. Products :
      7. Volume :
        22
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        Physiology
      11. Keywords :
        FMT; OsteoSense; ProSense bone mineralization; bone turnover markers; molecular imaging; bisphosphonates; in vivo imaging
      12. Abstract :
        Abstract: FRFP binds to mineral at osteoblastic, osteoclastic, and quiescent surfaces, with accumulation likely modulated by vascular delivery. In vivo visualization and quantification of binding can be accomplished noninvasively in animal models through optical tomographic imaging.

        Introduction: The development of near-infrared optical markers as reporters of bone metabolism will be useful for early diagnosis of disease. Bisphosphonates bind differentially to osteoblastic and osteoclastic surfaces depending on choice of side-chain and dose, and fluorescently tagged bisphosphonates provide a convenient way to visualize these sites. This study examines the ability of a fluorescently labeled pamidronate imaging probe to bind to regions of bone formation and resorption in vivo.

        Materials and Methods: In vitro binding of a far-red fluorescent pamidronate (FRFP) to mineral was assessed using intact and demineralized dentine slices. In vivo, FRFP binding was studied in three models: developing neonatal mouse, bone healing after injury, and metastasis-induced osteolysis and fracture. 3D fluorescence molecular tomographic (FMT) imaging was used to visualize signal deep within the body.

        Results: FRFP binding to bone depends on the quantity of mineral present and can be liberated from the bone during decalcification. In vivo, FRFP binds to surfaces of actively forming bone, as assessed by alkaline phosphatase staining, surfaces undergoing active resorption, as noted by scalloped bone border and presence of osteoclasts, and to quiescent surfaces not involved in formation or resorption. Binding is likely modulated by vascular delivery of the imaging agent to the exposed mineral surface and total quantity of surface exposed.FMT imaging is capable of visualizing regions of bone formation because of a large volume of labeled surface, but like radiolabeled bone scans, cannot discriminate pure osteolysis caused by metastasis.

        Conclusions: FRFP may function as a local biomarker of bisphosphonate deposition to assess interplay between drug and cellular environment or may be combined with other imaging agents or fluorescent cells for the noninvasive assessment of local bone metabolism in vivo.
      13. URL :
        http://onlinelibrary.wiley.com/doi/10.1359/jbmr.070504/references?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nat%20Med&rft.atitle=Shedding%20light%20onto%20live%20molecular%20targets&rft.volume=9&rf
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4530
      1. Author :
        Aki Hanyu; Kiyotsugu Kojima; Kiyohiko Hatake; Kimie Nomura; Hironori Murayama; Yuichi Ishikawa; Satoshi Miyata; Masaru Ushijima; Masaaki Matsuura; Etsuro Ogata; Keiji Miyazawa;Takeshi Imamura
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Cancer Science
      6. Products :
      7. Volume :
        100
      8. Issue :
        11
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Angiogenesis; metastasis; in vivo imaging; fluorescence imaging
      12. Abstract :
        Angiogenesis plays a crucial role in cancer progression and metastasis. Thus, blocking tumor angiogenesis is potentially a universal approach to prevent tumor establishment and metastasis. In this study, we used in vivo and ex vivo fluorescence imaging to show that an antihuman vascular endothelial growth factor (VEGF) antibody represses angiogenesis and the growth of primary tumors of human fibrosarcoma HT1080 cells in implanted nude mice. Interestingly, administering the antihuman VEGF antibody reduced the development of new blood vessels and normalized pre-existing tumor vasculature in HT1080 cell tumors. In addition, antihuman VEGF antibody treatment decreased lung metastasis from the primary tumor, whereas it failed to block lung metastasis in a lung colonization experiment in which tumor cells were injected into the tail vein. These results suggest that VEGF produced by primary HT1080 cell tumors has a crucial effect on lung metastasis. The present study indicates that the in vivo fluorescent microscopy system will be useful to investigate the biology of angiogenesis and test the effectiveness of angiogenesis inhibitors.
      13. URL :
        http://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.2009.01305.x/full
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4495
      1. Author :
        Qingbei Zhang; Meng Yang; Jikun Shen; Lynnette M. Geerhold; Robert M Hoffman; H. Rosie Xing
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        International Journal of Cancer
      6. Products :
      7. Volume :
        126
      8. Issue :
        11
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        metastasis; hemotogenous spread; prostate cancer; GFP; in vivo imaging
      12. Abstract :
        Metastasis is primarily responsible for the morbidity and mortality of cancer. Improved therapeutic outcomes and prognosis depend on improved understanding of mechanisms regulating the establishment of early metastasis. In this study, use of green fluorescent protein (GFP)-expressing PC-3 orthotopic model of human prostate cancer and two complementary fluorescence in vivo imaging systems (Olympus OV100 and VisEn FMT) allowed for the first time real-time characterization of cancer cell-endothelium interactions during spontaneous metastatic colonization of the liver and lung in live mice. We observed that prior to the detection of extra-vascular metastases, GFP-expressing PC-3 cancer cells resided initially inside the blood vessels of the liver and the lung, where they proliferated and expressed Ki-67 and exhibited matrix metalloprotenases (MMP) activity. Thus, the intravascular cancer cells produced their own microenvironment, where they could continue to proliferate. Extravasation occurred earlier in the lung than in the liver. Our results demonstrate that the intravascular microenvironment is a critical staging area for the development of metastasis that later can invade the parenchyma. Intravascular tumor cells may represent a therapeutic target to inhibit the development of extravascular metastases. Therefore, this imageable model of intravascular metastasis may be used for evaluation of novel anti-metastatic agents.
      13. URL :
        http://onlinelibrary.wiley.com/doi/10.1002/ijc.24979/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4493
Back to Search
Select All  |  Deselect All