1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

1–10 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Xiao, K.; Li, Y.; Lee, J. S.; Gonik, A. M.; Dong, T.; Fung, G.; Sanchez, E.; Xing, L.; Cheng, H. R.; Luo, J.; Lam, K. S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Cancer Res
      6. Products :
      7. Volume :
        72
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        SKOV3-luc-D3, SKOV3-luc, IVIS, Ovarian Cancer, Animals; Antineoplastic Agents, Phytogenic/*administration & dosage; Cell Line, Tumor; Drug Carriers/*chemical synthesis/chemistry/therapeutic use; Drug Delivery Systems/*methods; Female; Flow Cytometry; Humans; Integrin alpha Chains/metabolism; Mice; Mice, Nude; Micelles; Microscopy, Confocal; Nanoparticles/chemistry/therapeutic use; Ovarian Neoplasms/*drug therapy; Paclitaxel/*administration & dosage; Peptides/chemical synthesis/therapeutic use; Polyethylene Glycols/chemistry
      12. Abstract :
        Micellar nanoparticles based on linear polyethylene glycol (PEG) block dendritic cholic acids (CA) copolymers (telodendrimers), for the targeted delivery of chemotherapeutic drugs in the treatment of cancers, are reported. The micellar nanoparticles have been decorated with a high-affinity “OA02” peptide against alpha-3 integrin receptor to improve the tumor-targeting specificity which is overexpressed on the surface of ovarian cancer cells. “Click chemistry” was used to conjugate alkyne-containing OA02 peptide to the azide group at the distal terminus of the PEG chain in a representative PEG(5k)-CA(8) telodendrimer (micelle-forming unit). The conjugation of OA02 peptide had negligible influence on the physicochemical properties of PEG(5k)-CA(8) nanoparticles and as hypothesized, OA02 peptide dramatically enhanced the uptake efficiency of PEG(5k)-CA(8) nanoparticles (NP) in SKOV-3 and ES-2 ovarian cancer cells via receptor-mediated endocytosis, but not in alpha-3 integrin-negative K562 leukemia cells. When loaded with paclitaxel, OA02-NPs had significantly higher in vitro cytotoxicity against both SKOV-3 and ES-2 ovarian cancer cells as compared with nontargeted nanoparticles. Furthermore, the in vivo biodistribution study showed OA02 peptide greatly facilitated tumor localization and the intracellular uptake of PEG(5k)-CA(8) nanoparticles into ovarian cancer cells as validated in SKOV3-luc tumor-bearing mice. Finally, paclitaxel (PTX)-loaded OA02-NPs exhibited superior antitumor efficacy and lower systemic toxicity profile in nude mice bearing SKOV-3 tumor xenografts, when compared with equivalent doses of nontargeted PTX-NPs as well as clinical paclitaxel formulation (Taxol). Therefore, OA02-targeted telodendrimers loaded with paclitaxel have great potential as a new therapeutic approach for patients with ovarian cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22396491
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10543
      1. Author :
        Snoeks, T. J.; Lowik, C. W.; Kaijzel, E. L.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Angiogenesis
      6. Products :
      7. Volume :
        13
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense,, Animals; Diagnostic Imaging/*methods; Fluorescent Dyes/metabolism; Genes, Reporter; Neovascularization, Pathologic/*diagnosis; *Optical Phenomena
      12. Abstract :
        In recent years, molecular imaging gained significant importance in biomedical research. Optical imaging developed into a modality which enables the visualization and quantification of all kinds of cellular processes and cancerous cell growth in small animals. Novel gene reporter mice and cell lines and the development of targeted and cleavable fluorescent “smart” probes form a powerful imaging toolbox. The development of systems collecting tomographic bioluminescence and fluorescence data enabled even more spatial accuracy and more quantitative measurements. Here we describe various bioluminescent and fluorescent gene reporter models and probes that can be used to specifically image and quantify neovascularization or the angiogenic process itself.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20449766
      14. Call Number :
        PKI @ kd.modi @ 10
      15. Serial :
        10379
      1. Author :
        Weljie, A. M.; Bondareva, A.; Zang, P.; Jirik, F. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        J Biomol NMR
      6. Products :
      7. Volume :
        49
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-luc2, IVIS, Breast Cancer, Bioware
      12. Abstract :
        Hypoxia can promote invasive behavior in cancer cells and alters the response to therapeutic intervention as a result of changes in the expression many genes, including genes involved in intermediary metabolism. Although metabolomics technologies are capable of simultaneously measuring a wide range of metabolites in an untargeted manner, these methods have been relatively under utilized in the study of cancer cell responses to hypoxia. Thus, (1)H NMR metabolomics was used to examine the effects of hypoxia in the MDA-MB-231 human breast cancer cell line, both in vitro and in vivo. Cell cultures were compared with respect to their metabolic responses during growth under either hypoxic (1% O(2)) or normoxic conditions. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to identify a set of metabolites that were responsive to hypoxia. Via intracardiac administration, MDA-MB-231 cells were also used to generate widespread metastatic disease in immuno-compromised mice. Serum metabolite analysis was conducted to compare animals with and without a large tumor burden. Intriguingly, using a cross-plot of the OPLS loadings, both the in vitro and in vivo samples yielded a subset of metabolites that were significantly altered by hypoxia. These included primarily energy metabolites and amino acids, indicative of known alterations in energy metabolism, and possibly protein synthesis or catabolism. The results suggest that the metabolite pattern identified might prove useful as a marker for intra-tumoral hypoxia.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21373841
      14. Call Number :
        PKI @ kd.modi @ 6
      15. Serial :
        10494
      1. Author :
        Neal K. Devaraj; Edmund J. Keliher; Greg M. Thurber; Matthias Nahrendorf; Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Bioconjugate Chemistry
      6. Products :
      7. Volume :
        20
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        in vivo imaging; fluorescence molecular tomography
      12. Abstract :
        We report the synthesis and in vivo characterization of an 18F modified trimodal nanoparticle (18F-CLIO). This particle consists of cross-linked dextran held together in core-shell formation by a superparamagnetic iron oxide core and functionalized with the radionuclide 18F in high yield via “click” chemistry. The particle can be detected with positron emission tomography, fluorescence molecular tomography, and magnetic resonance imaging. The presence of 18F dramatically lowers the detection threshold of the nanoparticles, while the facile conjugation chemistry provides a simple platform for rapid and efficient nanoparticle labeling.
      13. URL :
        http://pubs.acs.org/doi/abs/10.1021/bc8004649
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4498
      1. Author :
        Zhang, J.; Preda, D. V.; Vasquez, K. O.; Morin, J.; Delaney, J.; Bao, B.; Percival, M. D.; Xu, D.; McKay, D.; Klimas, M.; Bednar, B.; Sur, C.; Gao, D. Z.; Madden, K.; Yared, W.; Rajopadhye, M.; Peterson, J. D.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Am J Physiol Renal Physiol
      6. Products :
      7. Volume :
        303
      8. Issue :
        N/A
      9. Page Numbers :
        F593-603
      10. Research Area :
        N/A
      11. Keywords :
        ReninSense 680 FAST, FMT, Animal Feed/analysis; Animals; Cathepsin D; Cathepsin G; Female; Fluorescent Dyes/*pharmacology; Humans; Mice; Mice, Inbred C57BL; Peptides/*pharmacology; Peptidyl-Dipeptidase A/metabolism; Rats; Renin/*blood/*metabolism; Renin-Angiotensin System/physiology; Sensitivity and Specificity; Sodium, Dietary
      12. Abstract :
        The renin-angiotensin system (RAS) is well studied for its regulation of blood pressure and fluid homeostasis, as well as for increased activity associated with a variety of diseases and conditions, including cardiovascular disease, diabetes, and kidney disease. The enzyme renin cleaves angiotensinogen to form angiotensin I (ANG I), which is further cleaved by angiotensin-converting enzyme to produce ANG II. Although ANG II is the main effector molecule of the RAS, renin is the rate-limiting enzyme, thus playing a pivotal role in regulating RAS activity in hypertension and organ injury processes. Our objective was to develop a near-infrared fluorescent (NIRF) renin-imaging agent for noninvasive in vivo detection of renin activity as a measure of tissue RAS and in vitro plasma renin activity. We synthesized a renin-activatable agent, ReninSense 680 FAST (ReninSense), using a NIRF-quenched substrate derived from angiotensinogen that is cleaved specifically by purified mouse and rat renin enzymes to generate a fluorescent signal. This agent was assessed in vitro, in vivo, and ex vivo to detect and quantify increases in plasma and kidney renin activity in sodium-sensitive inbred C57BL/6 mice maintained on a low dietary sodium and diuretic regimen. Noninvasive in vivo fluorescence molecular tomographic imaging of the ReninSense signal in the kidney detected increased renin activity in the kidneys of hyperreninemic C57BL/6 mice. The agent also effectively detected renin activity in ex vivo kidneys, kidney tissue sections, and plasma samples. This approach could provide a new tool for assessing disorders linked to altered tissue and plasma renin activity and to monitor the efficacy of therapeutic treatments.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22674025
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10572
      1. Author :
        Correa de Sampaio, P.; Auslaender, D.; Krubasik, D.; Failla, A. V.; Skepper, J. N.; Murphy, G.; English, W. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        7
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-luc2, IVIS, Breast Cancer, Bioware, Angiogenesis Inhibitors/pharmacology; *Cell Communication/drug effects; Cell Proliferation/drug effects; Extracellular Matrix/drug effects/metabolism; Fibroblasts/drug effects/metabolism/pathology; Gene Silencing/drug effects; Human Umbilical Vein Endothelial Cells/drug effects/metabolism; Humans; Intercellular Signaling Peptides and Proteins/pharmacology; Luminescent Measurements; Matrix Metalloproteinase 14/metabolism; Microscopy, Fluorescence, Multiphoton; *Models, Biological; Neoplasms/*blood supply/enzymology/*pathology; Neovascularization, Pathologic/*pathology; Signal Transduction/drug effects; Spheroids, Cellular/drug effects/enzymology/pathology; Stromal Cells/drug effects/pathology; Tumor Cells, Cultured
      12. Abstract :
        Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular heterogeneity and complexity of angiogenesis within the tumour microenvironment. In this study we describe the Minitumour model--a 3 dimensional human spheroid-based system consisting of endothelial cells and fibroblasts in co-culture with the breast cancer cell line MDA-MB-231, for the study of tumour angiogenesis in vitro. After implantation in collagen-I gels, Minitumour spheroids form quantifiable endothelial capillary-like structures. The endothelial cell pre-capillary sprouts are supported by the fibroblasts, which act as mural cells, and their growth is increased by the presence of cancer cells. Characterisation of the Minitumour model using small molecule inhibitors and inhibitory antibodies show that endothelial sprout formation is dependent on growth factors and cytokines known to be important for tumour angiogenesis. The model also shows a response to anti-angiogenic agents similar to previously described in vivo data. We demonstrate that independent manipulation of the different cell types is possible, using common molecular techniques, before incorporation into the model. This aspect of Minitumour spheroid analysis makes this model ideal for high content studies of gene function in individual cell types, allowing for the dissection of their roles in cell-cell interactions. Finally, using this technique, we were able to show the requirement of the metalloproteinase MT1-MMP in endothelial cells and fibroblasts, but not cancer cells, for sprouting angiogenesis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22363483
      14. Call Number :
        PKI @ kd.modi @ 10
      15. Serial :
        10492
      1. Author :
        He, T.; Xue, Z.; Lu, K.; Valdivia y Alvarado, M.; Wong, K. K.; Xie, W.; Wong, S. T.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Comput Med Imaging Graph
      6. Products :
      7. Volume :
        36
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        N/A
      12. Abstract :
        BACKGROUND: Lung cancer is the leading cause of cancer-related death in the United States, with more than half of the cancers are located peripherally. Computed tomography (CT) has been utilized in the last decade to detect early peripheral lung cancer. However, due to the high false diagnosis rate of CT, further biopsy is often necessary to confirm cancerous cases. This renders intervention for peripheral lung nodules (especially for small peripheral lung cancer) difficult and time-consuming, and it is highly desirable to develop new, on-the-spot earlier lung cancer diagnosis and treatment strategies. PURPOSE: The objective of this study is to develop a minimally invasive multimodality image-guided (MIMIG) intervention system to detect lesions, confirm small peripheral lung cancer, and potentially guide on-the-spot treatment at an early stage. Accurate image guidance and real-time optical imaging of nodules are thus the key techniques to be explored in this work. METHODS: The MIMIG system uses CT images and electromagnetic (EM) tracking to help interventional radiologists target the lesion efficiently. After targeting the lesion, a fiber-optic probe coupled with optical molecular imaging contrast agents is used to confirm the existence of cancerous tissues on-site at microscopic resolution. Using the software developed, pulmonary vessels, airways, and nodules can be segmented and visualized for surgical planning; the segmented results are then transformed onto the intra-procedural CT for interventional guidance using EM tracking. Endomicroscopy through a fiber-optic probe is then performed to visualize tumor tissues. Experiments using IntegriSense 680 fluorescent contrast agent labeling alphavbeta3 integrin were carried out for rabbit lung cancer models. Confirmed cancers could then be treated on-the-spot using radio-frequency ablation (RFA). RESULTS: The prototype system is evaluated using the rabbit VX2 lung cancer model to evaluate the targeting accuracy, guidance efficiency, and performance of molecular imaging. Using this system, we achieved an average targeting accuracy of 3.04 mm, and the IntegriSense signals within the VX2 tumors were found to be at least two-fold higher than those of normal tissues. The results demonstrate great potential for applying the system in human trials in the future if an optical molecular imaging agent is approved by the Food and Drug Administration (FDA). CONCLUSIONS: The MIMIG system was developed for on-the-spot interventional diagnosis of peripheral lung tumors by combining image-guidance and molecular imaging. The system can be potentially applied to human trials on diagnosing and treating earlier stage lung cancer. For current clinical applications, where a biopsy is unavoidable, the MIMIG system without contrast agents could be used for biopsy guidance to improve the accuracy and efficiency.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22483054
      14. Call Number :
        PKI @ kd.modi @ 9
      15. Serial :
        10364
      1. Author :
        Bernthal, N. M.; Stavrakis, A. I.; Billi, F.; Cho, J. S.; Kremen, T. J.; Simon, S. I.; Cheung, A. L.; Finerman, G. A.; Lieberman, J. R.; Adams, J. S.; Miller, L. S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        5
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, Xen29, Xen 29, Staphylococcus aureus Xen29, Animals; Anti-Bacterial Agents/*therapeutic use; Arthroplasty/*adverse effects; Disease Models, Animal; Humans; Joint Diseases/drug therapy/*microbiology/surgery; Joints/microbiology/surgery; Male; Mice; Mice, Inbred C57BL; Minocycline/therapeutic use; Postoperative Complications/drug therapy/microbiology/*prevention &; control; Prostheses and Implants; Rifampin/therapeutic use; Staphylococcal Infections/drug therapy/microbiology/*prevention &; control/surgery; Staphylococcus aureus/drug effects/genetics/*physiology
      12. Abstract :
        BACKGROUND: Post-arthroplasty infections represent a devastating complication of total joint replacement surgery, resulting in multiple reoperations, prolonged antibiotic use, extended disability and worse clinical outcomes. As the number of arthroplasties in the U.S. will exceed 3.8 million surgeries per year by 2030, the number of post-arthroplasty infections is projected to increase to over 266,000 infections annually. The treatment of these infections will exhaust healthcare resources and dramatically increase medical costs. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate novel preventative therapeutic strategies against post-arthroplasty infections, a mouse model was developed in which a bioluminescent Staphylococcus aureus strain was inoculated into a knee joint containing an orthopaedic implant and advanced in vivo imaging was used to measure the bacterial burden in real-time. Mice inoculated with 5x10(3) and 5x10(4) CFUs developed increased bacterial counts with marked swelling of the affected leg, consistent with an acute joint infection. In contrast, mice inoculated with 5x10(2) CFUs developed a low-grade infection, resembling a more chronic infection. Ex vivo bacterial counts highly correlated with in vivo bioluminescence signals and EGFP-neutrophil fluorescence of LysEGFP mice was used to measure the infection-induced inflammation. Furthermore, biofilm formation on the implants was visualized at 7 and 14 postoperative days by variable-pressure scanning electron microscopy (VP-SEM). Using this model, a minocycline/rifampin-impregnated bioresorbable polymer implant coating was effective in reducing the infection, decreasing inflammation and preventing biofilm formation. CONCLUSIONS/SIGNIFICANCE: Taken together, this mouse model may represent an alternative pre-clinical screening tool to evaluate novel in vivo therapeutic strategies before studies in larger animals and in human subjects. Furthermore, the antibiotic-polymer implant coating evaluated in this study was clinically effective, suggesting the potential for this strategy as a therapeutic intervention to combat post-arthroplasty infections.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20830204
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10447
      1. Author :
        Korotcov, Alexandru; Shan, Liang; Meng, Huan; Wang, Tongxin; Sridhar, Rajagopalan; Zhao, Yuliang; Liang, Xing-Jie; Wang, Paul C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Journal of nanoscience and nanotechnology
      6. Products :
      7. Volume :
        10
      8. Issue :
        11
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Contrast Media; Magnetic Resonance Imaging; Mice; Nanotechnology; PC-3M-luc
      12. Abstract :
        We have developed and tested a liposomal nanocomplex system, which contains Gd-DTPA as a payload and transferrin on the surface, as a tumor specific targeting MRI contrast agent for studying prostate cancer tumors in mice. In vivo, the probe significantly enhanced the MRI signal. The image contrast between the peripheral region of the tumor and the non-involved muscle was nearly 50% higher two hours after administration of the nanocomplex. The liposomal nanocomplex increased the amount of Gd accumulated in tumors by factor 2.8 compared to that accumulated by using Magnevist alone. Moreover, the heterogeneous MRI image features correlate well with the tumor pathology. The image enhancement patterns can be used for cancer prognosis and non-invasive monitoring of the response to therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21137979
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8963
Back to Search
Select All  |  Deselect All