1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

431–440 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Jenkins, D. E.; Oei, Y.; Hornig, Y. S.; Yu, S. F.; Dusich, J.; Purchio, T.; Contag, P. R.
      2. Title :
        Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis
      3. Type :
        Journal Article
      4. Year :
        2003
      5. Publication :
        Clinical and Experimental Metastasis
      6. Products :
      7. Volume :
        20
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        A549-luc-C8 cells; Animals, Cell Line, Tumor, Colonic Neoplasms/pathology, Fluorouracil/therapeutic use, Humans, Image Interpretation, Computer-Assisted, Longitudinal Studies, Luciferases/diagnostic use, Luminescent Measurements, Lung Neoplasms/ secondary, Lymphatic Metastasis, Male, Mice, Mice, SCID, Mitomycin/therapeutic use, Models, Biological, Neoplasm Transplantation, Prostatic Neoplasms/drug therapy/ pathology IVIS, Xenogen
      12. Abstract :
        Bioluminescent imaging (BLI) permits sensitive in vivo detection and quantification of cells specifically engineered to emit visible light. Three stable human tumor cell lines engineered to express luciferase were assessed for their tumorigenicity in subcutaneous, intravenous and spontaneous metastasis models. Bioluminescent PC-3M-luc-C6 human prostate cancer cells were implanted subcutaneously into SCID-beige mice and were monitored for tumor growth and response to 5-FU and mitomycin C treatments. Progressive tumor development and inhibition/regression following drug treatment were observed and quantified in vivo using BLI. Imaging data correlated to standard external caliper measurements of tumor volume, but bioluminescent data permitted earlier detection of tumor growth. In a lung colonization model, bioluminescent A549-luc-C8 human lung cancer cells were injected intravenously and lung metastases were monitored in vivo by whole animal imaging. Anesthetized mice were imaged weekly allowing a temporal assessment of in vivo lung tumor growth. This longitudinal study design permitted an accurate, real-time evaluation of tumor burden in the same animals over time. End-point bioluminescence measured in vivo correlated to total lung weight at necropsy. For a spontaneous metastatic tumor model, bioluminescent HT-29-luc-D6 human colon cancer cells implanted subcutaneously produced metastases to lung and lymph nodes in SCID-beige mice. Both primary tumors and micrometastases were detected by BLI in vivo. Ex vivo imaging of excised lung lobes and lymph nodes confirmed the in vivo signals and indicated a slightly higher frequency of metastasis in some mice. Levels of bioluminescence from in vivo and ex vivo images corresponded to the frequency and size of metastatic lesions in lungs and lymph nodes as subsequently confirmed by histology. In summary, BLI provided rapid, non-invasive monitoring of tumor growth and regression in animals. Its application to traditional oncology animal models offers quantitative and sensitive analysis of tumor growth and metastasis. The ability to temporally assess tumor development and responses to drug therapies in vivo also improves upon current standard animal models that are based on single end point data.
      13. URL :
        N/A
      14. Call Number :
        139189
      15. Serial :
        5565
      1. Author :
        Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        Breast cancer research: BCR
      6. Products :
      7. Volume :
        7
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Breast Neoplasms; Disease Models, Animal; Female; Humans; Luciferases; Mammary Neoplasms, Animal; MDA-MB-231-D3H2LN cells; Mice; Mice, Nude; Neoplasm Metastasis; Plasmids; Transplantation, Heterologous; Tumor Cells, Cultured
      12. Abstract :
        INTRODUCTION Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. METHOD Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. RESULTS The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4-6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at multiple sites simultaneously. Ex vivo imaging data from sampled tissues verified both skeletal and multiple soft tissue tumor metastasis. CONCLUSION This study characterized two new bioluminescent MDA-MB-231-luc human breast carcinoma cell lines with enhanced tumor growth and widespread metastasis in mice. Their application to current xenograft models of breast cancer offers rapid and highly sensitive detection options for preclinical assessment of anticancer therapies in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15987449
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8960
      1. Author :
        Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        Breast cancer research: BCR
      6. Products :
      7. Volume :
        7
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Breast Neoplasms; Disease Models, Animal; Female; Humans; Luciferases; Mammary Neoplasms, Animal; MDA-MB-231-D3H1 cells; Mice; Mice, Nude; Neoplasm Metastasis; Plasmids; Transplantation, Heterologous; Tumor Cells, Cultured
      12. Abstract :
        INTRODUCTION Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. METHOD Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. RESULTS The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4-6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at multiple sites simultaneously. Ex vivo imaging data from sampled tissues verified both skeletal and multiple soft tissue tumor metastasis. CONCLUSION This study characterized two new bioluminescent MDA-MB-231-luc human breast carcinoma cell lines with enhanced tumor growth and widespread metastasis in mice. Their application to current xenograft models of breast cancer offers rapid and highly sensitive detection options for preclinical assessment of anticancer therapies in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15987449
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8993
      1. Author :
        Shan, Liang; Wang, Songping; Korotcov, Alexandru; Sridhar, Rajagopalan; Wang, Paul C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Ethnicity & disease
      6. Products :
      7. Volume :
        18
      8. Issue :
        2 Suppl 2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Breast Neoplasms; Disease Models, Animal; Humans; Luciferases; Luminescent Measurements; Lung Neoplasms; Mammary Neoplasms, Animal; MDA-MB-231-D3H1 cells; Mice; Mice, Nude; Tumor Cells, Cultured
      12. Abstract :
        INTRODUCTION Convenient animal models are needed to study the progression and treatment of human tumors in vivo. Luciferase-based bioluminescent imaging (BLI) enables researchers to monitor tumors noninvasively and is sensitive to subtle changes in tumors. METHODS Three human breast cancer models in nude mice were established by using luciferase-expressing MDA-MB-231-luc cells. They were subcutaneous xenografts (n = 8), mammary gland xenografts (n = 5), and lung metastases (n = 3). The tumors were imaged in live mice by using a highly sensitive BLI system. The relationship between the intensity of bioluminescence from the tumor was analyzed with respect to tumor volume. Bioluminescent signals from lung metastases were studied to determine the threshold of detectability. RESULTS Tumors growing in the mice's backs and mammary gland fat pads were imaged dynamically after administration of D-luciferin. The bioluminescent intensity from the tumors gradually increased and then decreased in a one-hour span. The time to reach maximum signal intensity differed significantly among tumors and was independent of tumor volume and unrelated to maximum signal intensity. A significant correlation was observed between tumor volume and maximum signal intensity in tumors from both sites. Lung metastatic lesions of .3-.5 mm in diameter were clearly detectable through the entire animal imaging process. CONCLUSION The animal models established with luciferase-expressing cancer cells in combination with BLI provide a system for rapid, noninvasive, and quantitative analysis of tumor biomass and metastasis. This biosystem simplifies in vivo monitoring of tumors and will be useful for noninvasive investigation of tumor growth and response to therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18646323
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8991
      1. Author :
        Sadikot, R. T.; Blackwell, T. S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Methods Mol Biol
      6. Products :
      7. Volume :
        477
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Adenoviridae/genetics, Anesthesia, Animals, Firefly Luciferin/administration & dosage/pharmacology, *Gene Expression Regulation/drug effects, Genetic Vectors/genetics, Luciferases/metabolism, Luminescent Measurements/*methods, Mice, Photons, Whole Body Imaging/*methods IVIS, Xenogen, Xen5
      12. Abstract :
        Molecular imaging offers many unique opportunities to study biological processes in intact organisms. Bioluminescence is the emission of light from biochemical reactions that occur within a living organism. Luciferase has been used as a reporter gene in transgenic mice but, until bioluminescence imaging was described, the detection of luciferase activity required either sectioning of the animal or excision of tissue and homogenization to measure enzyme activities in a conventional luminometer. Bioluminescence imaging (BLI) is based on the idea that biological light sources can be incorporated into cells and animal models artificially that does not naturally express the luminescent genes. This imaging modality has proven to be a very powerful methodology to detect luciferase reporter activity in intact animal models. This form of optical imaging is low cost and noninvasive and facilitates real-time analysis of disease processes at the molecular level in living organisms. Bioluminescence provides a noninvasive method to monitor gene expression in vivo and has enormous potential to elucidate the pathobiology of lung diseases in intact mouse models, including models of inflammation/injury, infection, and cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19082962
      14. Call Number :
        142705
      15. Serial :
        5558
      1. Author :
        Priddle, Helen; Grabowska, Anna; Morris, Teresa; Clarke, Philip A; McKenzie, Andrew J; Sottile, Virginie; Denning, Chris; Young, Lorraine; Watson, Sue
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Cloning and stem cells
      6. Products :
      7. Volume :
        11
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Cell Differentiation; Chick Embryo; Embryonic Stem Cells; Fluorescent Dyes; Humans; Luciferases; Luminescent Measurements; Mice; Mice, SCID; PC-3M-luc; Software; Stem Cell Transplantation; Teratoma
      12. Abstract :
        Research into the behavior, efficacy, and biosafety of stem cells with a view to clinical transplantation requires the development of noninvasive methods for in vivo imaging of cells transplanted into animal models. This is particularly relevant for human embryonic stem cells (hESCs), because transplantation of undifferentiated hESCs leads to tumor formation. The present study aimed to monitor hESCs in real time when injected in vivo. hESCs were stably transfected to express luciferase, and luciferase expression was clearly detected in the undifferentiated and differentiated state. When transfected hESCs were injected into chick embryos, bioluminescence could be detected both ex and in ovo. In the SCID mouse model, undifferentiated hESCs were detectable after injection either into the muscle layer of the peritoneum or the kidney capsule. Tumors became detectable between days 10-30, with approximately a 3 log increase in the luminescence signal by day 75. The growth phase occurred earlier in the kidney capsule and then reached a plateau, whilst tumors in the peritoneal wall grew steadily throughout the period analysed. These results show the widespread utility of bioluminescent for in vivo imaging of hESCs in a variety of model systems for preclinical research into regenerative medicine and cancer biology.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19522673
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8961
      1. Author :
        Xu, Xiulan; Miller, Sally A; Baysal-Gurel, Fulya; Gartemann, Karl-Heinz; Eichenlaub, Rudolf; Rajashekara, Gireesh
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Applied and environmental microbiology
      6. Products :
      7. Volume :
        76
      8. Issue :
        12
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Actinomycetales; Bioware; Genes, Reporter; Genetic Engineering; Luminescent Proteins; Lycopersicon esculentum; Mirabilis; Plant Diseases; pXen-13; Recombinant Proteins; Seeds; Staining and Labeling
      12. Abstract :
        Clavibacter michiganensis subsp. michiganensis is a Gram-positive bacterium that causes wilting and cankers, leading to severe economic losses in commercial tomato production worldwide. The disease is transmitted from infected seeds to seedlings and mechanically from plant to plant during seedling production, grafting, pruning, and harvesting. Because of the lack of tools for genetic manipulation, very little is known regarding the mechanisms of seed and seedling infection and movement of C. michiganensis subsp. michiganensis in grafted plants, two focal points for application of bacterial canker control measures in tomato. To facilitate studies on the C. michiganensis subsp. michiganensis movement in tomato seed and grafted plants, we isolated a bioluminescent C. michiganensis subsp. michiganensis strain using the modified Tn1409 containing a promoterless lux reporter. A total of 19 bioluminescent C. michiganensis subsp. michiganensis mutants were obtained. All mutants tested induced a hypersensitive response in Mirabilis jalapa and caused wilting of tomato plants. Real-time colonization studies of germinating seeds using a virulent, stable, constitutively bioluminescent strain, BL-Cmm17, showed that C. michiganensis subsp. michiganensis aggregated on hypocotyls and cotyledons at an early stage of germination. In grafted seedlings in which either the rootstock or scion was exposed to BL-Cmm17 via a contaminated grafting knife, bacteria were translocated in both directions from the graft union at higher inoculum doses. These results emphasize the use of bioluminescent C. michiganensis subsp. michiganensis to help better elucidate the C. michiganensis subsp. michiganensis-tomato plant interactions. Further, we demonstrated the broader applicability of this tool by successful transformation of C. michiganensis subsp. nebraskensis with Tn1409::lux. Thus, our approach would be highly useful to understand the pathogenesis of diseases caused by other subspecies of the agriculturally important C. michiganensis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20400561
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9028
      1. Author :
        Cirstoiu-Hapca, A; Buchegger, F; Lange, N; Bossy, L; Gurny, R; Delie, F
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Journal of controlled release: official journal of the Controlled Release Society
      6. Products :
      7. Volume :
        144
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents, Phytogenic; Bioware; Cell Line, Tumor; Drug Carriers; Female; Humans; Mice; Nanoparticles; Ovarian Neoplasms; Paclitaxel; Receptor, erbB-2; SKOV3-luc-D3 cells; Tissue Distribution; Xenograft Model Antitumor Assays
      12. Abstract :
        The benefit of polymeric immuno-nanoparticles (NPs-Tx-HER), consisting of paclitaxel (Tx)-loaded nanoparticles coated with anti-HER2 monoclonal antibodies (Herceptin, trastuzumab), in cancer treatment was assessed in a disseminated xenograft ovarian cancer model induced by intraperitoneal inoculation of SKOV-3 cells overexpressing HER2 antigens. The study was focused on the evaluation of therapeutic efficacy and biodistribution of NPs-Tx-HER compared to other Tx formulations. The therapeutic efficacy was determined by two methods: bioluminescence imaging and survival rate. The treatment regimen consisted in an initial dose of 20mg/kg Tx administered as 10mg/kg intravenously (IV) and 10mg/kg intraperitonealy (IP), followed by five alternative IP and IV injections of 10mg/kg Tx every 3 days. The bioluminescence study has clearly shown the superior anti-tumor activity of NPs-Tx-HER compared to free Tx. As a confirmation of these results, a significantly longer survival of mice was observed for NPs-Tx-HER treatment compared to free Tx, Tx-loaded nanoparticles coated with an irrelevant mAb (Mabthera, rituximab) or Herceptin alone, indicating the potential of immuno-nanoparticles in cancer treatment. The biodistribution pattern of Tx was assessed on healthy and tumor bearing mice after IV or IP administration. An equivalent biodistribution profile was observed in healthy mice for Tx encapsulated either in uncoated nanoparticles (NPs-Tx) or in NPs-Tx-HER. No significant difference in Tx biodistribution was observed after IV or IP injection, except for a lower accumulation in the lungs when NPs were administered by IP. Encapsulated Tx accumulated in the organs of the reticulo-endothelial system (RES) such as the liver and spleen, whereas free Tx had a non-specific distribution in all tested organs. Compared to free Tx, the single dose injection (IV or IP) of encapsulated Tx in mice bearing tumors induced a higher tumor accumulation. However, no difference in overall tumor accumulation between NPs-Tx-HER and NPs-Tx was observed. In conclusion, the encapsulation of Tx into NPs-Tx-HER immuno-nanoparticles resulted in an improved efficacy of drug in the treatment of disseminated ovarian cancer overexpressing HER2 receptors.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20219607
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9012
Back to Search
Select All  |  Deselect All