1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

411–420 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Woelfle, Mark A; Xu, Yao; Qin, Ximing; Johnson, Carl Hirschie
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Proceedings of the National Academy of Sciences of the United States of America
      6. Products :
      7. Volume :
        104
      8. Issue :
        47
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; Circadian Rhythm; Cyanobacteria; DNA, Bacterial; DNA, Superhelical; Gene Expression Regulation, Bacterial; Light; Plasmids; Promoter Regions, Genetic; pXen-13; Transcription, Genetic
      12. Abstract :
        The cyanobacterium Synechococcus elongatus expresses robust circadian (daily) rhythms under the control of the KaiABC-based core clockwork. Unlike eukaryotic circadian systems characterized thus far, the cyanobacterial clockwork modulates gene expression patterns globally and specific clock gene promoters are not necessary in mediating the circadian feedback loop. The oscilloid model postulates that global rhythms of transcription are based on rhythmic changes in the status of the cyanobacterial chromosome that are ultimately controlled by the KaiABC oscillator. By using a nonessential, cryptic plasmid (pANS) as a reporter of the superhelical state of DNA in cyanobacteria, we show that the supercoiling status of this plasmid changes in a circadian manner in vivo. The rhythm of topological change in the plasmid is conditional; this change is rhythmic in constant light and in light/dark cycles, but not in constant darkness. In further support of the oscilloid model, cyanobacterial promoters that are removed from their native chromosomal locations and placed on a plasmid preserve their circadian expression patterns.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18000054
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9031
      1. Author :
        Sottnik, J. L.; U, L. W.'Ren; Thamm, D. H.; Withrow, S. J.; Dow, S. W.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer Immunol Immunother
      6. Products :
      7. Volume :
        59
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals, Chronic Disease, Disease Models, Animal, Immunity, Innate, Killer Cells, Natural/immunology, Macrophages/immunology, Mice, Mice, Inbred C3H, Mice, Inbred Strains, Monocytes/immunology, Neoplasms, Neovascularization, Pathologic, Osteomyelitis/*complications, Osteosarcoma/*complications/*immunology/pathology, Staphylococcal Infections/*complications IVIS, Xenogen, Xen36
      12. Abstract :
        Clinical studies over the past several years have reported that metastasis-free survival times in humans and dogs with osteosarcoma are significantly increased in patients that develop chronic bacterial osteomyelitis at their surgical site. However, the immunological mechanism by which osteomyelitis may suppress tumor growth has not been investigated. Therefore, we used a mouse model of osteomyelitis to assess the effects of bone infection on innate immunity and tumor growth. A chronic Staphylococcal osteomyelitis model was established in C3H mice and the effects of infection on tumor growth of syngeneic DLM8 osteosarcoma were assessed. The effects of infection on tumor angiogenesis and innate immunity, including NK cell and monocyte responses, were assessed. We found that osteomyelitis significantly inhibited the growth of tumors in mice, and that the effect was independent of the infecting bacterial type, tumor type, or mouse strain. Depletion of NK cells or monocytes reversed the antitumor activity elicited by infection. Moreover, infected mice had a significant increase in circulating monocytes and numbers of tumor associated macrophages. Infection suppressed tumor angiogenesis but did not affect the numbers of circulating endothelial cells. Therefore, we concluded that chronic localized bacterial infection could elicit significant systemic antitumor activity dependent on NK cells and macrophages.
      13. URL :
        http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19701748
      14. Call Number :
        143227
      15. Serial :
        5718
      1. Author :
        Sottnik, Joseph L; U'Ren, Lance W; Thamm, Douglas H; Withrow, Stephen J; Dow, Steven W
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer immunology, immunotherapy: CII
      6. Products :
      7. Volume :
        59
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Chronic Disease; Disease Models, Animal; Immunity, Innate; Killer Cells, Natural; Macrophages; Mice; Mice, Inbred C3H; Mice, Inbred Strains; Monocytes; Neoplasms; Neovascularization, Pathologic; Osteomyelitis; Osteosarcoma; Staphylococcal Infections; Xen36
      12. Abstract :
        Clinical studies over the past several years have reported that metastasis-free survival times in humans and dogs with osteosarcoma are significantly increased in patients that develop chronic bacterial osteomyelitis at their surgical site. However, the immunological mechanism by which osteomyelitis may suppress tumor growth has not been investigated. Therefore, we used a mouse model of osteomyelitis to assess the effects of bone infection on innate immunity and tumor growth. A chronic Staphylococcal osteomyelitis model was established in C3H mice and the effects of infection on tumor growth of syngeneic DLM8 osteosarcoma were assessed. The effects of infection on tumor angiogenesis and innate immunity, including NK cell and monocyte responses, were assessed. We found that osteomyelitis significantly inhibited the growth of tumors in mice, and that the effect was independent of the infecting bacterial type, tumor type, or mouse strain. Depletion of NK cells or monocytes reversed the antitumor activity elicited by infection. Moreover, infected mice had a significant increase in circulating monocytes and numbers of tumor associated macrophages. Infection suppressed tumor angiogenesis but did not affect the numbers of circulating endothelial cells. Therefore, we concluded that chronic localized bacterial infection could elicit significant systemic antitumor activity dependent on NK cells and macrophages.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19701748
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9980
      1. Author :
        Dai, T.; Tegos, G. P.; Burkatovskaya, M.; Castano, A. P.; Hamblin, M. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Antimicrobial Agents and Chemotherapy
      6. Products :
      7. Volume :
        53
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, Xenogen, Xen5, Xen44
      12. Abstract :
        An engineered chitosan acetate bandage preparation (HemCon) is used as a hemostatic dressing, and its chemical structure suggests that it should also be antimicrobial. We previously showed that when a chitosan acetate bandage was applied to full-thickness excisional wounds in mice that had been infected with pathogenic bioluminescent bacteria (Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus), it was able to rapidly kill the bacteria and save the mice from developing fatal infections. Wound healing was also stimulated. In the present study, we asked whether a chitosan acetate bandage could act as a topical antimicrobial dressing when it was applied to third-degree burns in mice contaminated with two of these bacterial species (P. aeruginosa and P. mirabilis). Preliminary experiments established the length of burn time and the number of bacteria needed to produce fatal infections in untreated mice and established that the chitosan acetate bandage could adhere to the infected burn for up to 21 days. In the case of P. aeruginosa infections, the survival rate of mice treated with the chitosan acetate bandage was 73.3% (whereas the survival rate of mice treated with a nanocrystalline silver dressing was 27.3% [P = 0.0055] and that of untreated mice was 13.3% [P < 0.0002]). For P. mirabilis infections, the comparable survival rates were 66.7%, 62.5%, and 23.1% respectively. Quantitative bioluminescent signals showed that the chitosan acetate bandage effectively controlled the growth of bacteria in the burn and prevented the development of systemic sepsis, as shown by blood culture. These data suggest that chitosan acetate bandage is efficacious in preventing fatal burn infections.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19015341
      14. Call Number :
        137209
      15. Serial :
        5713
      1. Author :
        Izukuri, K.; Suzuki, K.; Yajima, N.; Ozawa, S.; Ito, S.; Kubota, E.; Hata, R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Transgenic Res
      6. Products :
      7. Volume :
        19
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals, B16-F10-luc2, B16F10-luc2; Base Sequence; Carcinoma, Lewis Lung/blood supply/genetics/immunology/therapy; Cell Line, Tumor; Chemokines, CXC/*genetics/*immunology; DNA Primers/genetics; Female; Gene Expression; Humans; Kidney/immunology; Male; Melanoma, Experimental/blood supply/genetics/immunology/therapy; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neoplasm Transplantation; Neoplasms, Experimental/blood supply/genetics/*immunology/*therapy; RNA, Messenger/genetics; Recombinant Proteins/genetics/immunology; Transplantation, Heterologous
      12. Abstract :
        We reported previously that the forced expression of the chemokine BRAK, also called CXCL14 in head and neck squamous cell carcinoma (HNSCC) cells decreased the rate of tumor formation and size of tumor xenografts compared with mock-vector treated cells in athymic nude mice or in severe combined immunodeficiency mice. This suppression occurred even though the growth rates of these cells were the same under in vitro culture conditions, suggesting that a high expression level of the gene in tumor cells is important for the suppression of tumor establishment in vivo. The aim of this study was to determine whether CXCL14/BRAK transgenic mice show resistance to tumor cell xenografts or not. CXCL14/BRAK cDNA was introduced into male C57BL/6 J pronuclei, and 10 founder transgenic mice (Tg) were obtained. Two lines of mice expressed over 10 times higher CXCL14/BRAK protein levels (14 and 11 ng/ml plasma, respectively) than normal blood level (0.9 ng/ml plasma), without apparent abnormality. The sizes of Lewis lung carcinoma and B16 melanoma cell xenografts in Tg mice were significantly smaller than those in control wild-type mice, indicating that CXCL14/BRAK, first found as a suppressor of tumor progression of HNSCC, also suppresses the progression of a carcinoma of other tissue origin. Immunohistochemical studies showed that invasion of blood vessels into tumors was suppressed in tumor xenografts of CXCL14/BRAK Tg mice. These results indicate that CXCL14/BRAK suppressed tumor cell xenografts by functioning paracrine or endocrine fashion and that CXCL14/BRAK is a very promising molecular target for tumor suppression without side effects.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20333465
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10348
      1. Author :
        Beckers, Annelies; Organe, Sophie; Timmermans, Leen; Scheys, Katryn; Peeters, Annelies; Brusselmans, Koen; Verhoeven, Guido; Swinnen, Johannes V
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Cancer research
      6. Products :
      7. Volume :
        67
      8. Issue :
        17
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Acetyl-CoA Carboxylase; Apoptosis; Autophagy; Bioware; Cell Death; Cell Proliferation; Drug Evaluation, Preclinical; Fatty Acids; Humans; Macrolides; Male; Neoplasms; Palmitic Acid; PC-3M-luc; Phospholipids; Prostatic Neoplasms; Tumor Cells, Cultured
      12. Abstract :
        Development and progression of cancer is accompanied by marked changes in the expression and activity of enzymes involved in the cellular homeostasis of fatty acids. One class of enzymes that play a particularly important role in this process are the acetyl-CoA carboxylases (ACC). ACCs produce malonyl-CoA, an intermediate metabolite that functions as substrate for fatty acid synthesis and as negative regulator of fatty acid oxidation. Here, using the potent ACC inhibitor soraphen A, a macrocyclic polyketide from myxobacteria, we show that ACC activity in cancer cells is essential for proliferation and survival. Even at nanomolar concentrations, soraphen A can block fatty acid synthesis and stimulate fatty acid oxidation in LNCaP and PC-3M prostate cancer cells. As a result, the phospholipid content of cancer cells decreased, and cells stopped proliferating and ultimately died. LNCaP cells predominantly died through apoptosis, whereas PC-3M cells showed signs of autophagy. Supplementation of the culture medium with exogenous palmitic acid completely abolished the effects of soraphen A and rescued the cells from cell death. Interestingly, when added to cultures of premalignant BPH-1 cells, soraphen A only slightly affected cell proliferation and did not induce cell death. Together, these findings indicate that cancer cells have become dependent on ACC activity to provide the cell with a sufficient supply of fatty acids to permit proliferation and survival, introducing the concept of using small-molecule ACC inhibitors as therapeutic agents for cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17804731
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8974
      1. Author :
        De Kwaadsteniet, Michele
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        N/A
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Antibiotics -- Therapeutic use; Bacteriocins; Bioware; Dissertations -- Microbiology; Drug resistance in microorganisms; Nisin; Respiratory infections -- Treatment; Skin -- Infections -- Treatment; Staphylococcus aureus; Theses -- Microbiology; Xen29
      12. Abstract :
        Multidrug resistant strains of Staphylococcus aureus is presenting an increasing threat, especially immune compromised individuals. Many of these strains have developed resistance to newly approved drugs such as quinupristin-dalfopristin, linezolid and daptomycin. The search for alternative treatment, including bacteriocins (ribosomally synthesized antimicrobial peptides) of lactic acid bacteria is increasing . Lactococcus lactis subsp. lactis F10, isolated from freshwater catfish, produced a new nisin variant active against clinical strains of S. aureus. The operon encoding nisin F is located on a plasmid and the structural gene has been sequenced. The lantibiotic is closely related to nisin Z, except at position 30 where valine replaced isoleucine. The antimicrobial activity of nisin F against S. aureus was tested in the respiratory tract of Wistar rats. Non-immunosuppressed and immunosuppressed rats were intranasally infected with S. aureus K and then treated with either nisin F or sterile physiological saline. Nisin F protected immunosuppressed rats against S. aureus, as symptoms of an infection were only detected in the trachea and lungs of immunosuppressed rats treated with saline. The safety of intranasally administered nisin F was also evaluated and proved to have no adverse side effects. The potential of nisin F as an antimicrobial agent to treat subcutaneous skin infections was evaluated by infecting C57BL/6 mice with a bioluminescent strain of S. aureus (Xen 36). Immunosuppressed mice were treated with either nisin F or sterile physiological saline 24 h and 48 h after infection with subcutaneously injected S. aureus Xen 36. Histology and bioluminescence flux measurements revealed that nisin F was ineffective in the treatment of deep dermal staphylococcal infections. Non-infected and infected mice treated with nisin F had an influx of polymorphonuclear cells in the deep stroma of the skin tissue. This suggested that nisin F, when injected subcutaneously, may have modulated the immune system. Nisin F proved an effective antimicrobial agent against S. aureus-related infections in the respiratory tract, but not against subcutaneous infections. The outcome of nisin F treatment thus depends on the route of administration and site of infection.
      13. URL :
        http://scholar.sun.ac.za/handle/10019.1/1285
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9042
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        Nature
      6. Products :
      7. Volume :
        433
      8. Issue :
        7025
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Aging; Animals; Antigens, CD36; Cell Line; Dimerization; Ethylnitrosourea; Gene Deletion; Glycerides; Homozygote; Humans; Immunologic Deficiency Syndromes; Lipopeptides; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Mutagenesis; Mutation; Oligopeptides; Peptidoglycan; Phenotype; Receptors, Cell Surface; Signal Transduction; Staphylococcal Infections; Staphylococcus aureus; Toll-Like Receptor 2; Toll-Like Receptors; Tumor Necrosis Factor-alpha; Zymosan
      12. Abstract :
        Toll-like receptor 2 (TLR2) is required for the recognition of numerous molecular components of bacteria, fungi and protozoa. The breadth of the ligand repertoire seems unusual, even if one considers that TLR2 may form heteromers with TLRs 1 and 6 (ref. 12), and it is likely that additional proteins serve as adapters for TLR2 activation. Here we show that an N-ethyl-N-nitrosourea-induced nonsense mutation of Cd36 (oblivious) causes a recessive immunodeficiency phenotype in which macrophages are insensitive to the R-enantiomer of MALP-2 (a diacylated bacterial lipopeptide) and to lipoteichoic acid. Homozygous mice are hypersusceptible to Staphylococcus aureus infection. Cd36(obl) macrophages readily detect S-MALP-2, PAM(2)CSK(4), PAM(3)CSK(4) and zymosan, revealing that some--but not all--TLR2 ligands are dependent on CD36. Already known as a receptor for endogenous molecules, CD36 is also a selective and nonredundant sensor of microbial diacylglycerides that signal via the TLR2/6 heterodimer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15690042
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9991
      1. Author :
        Sharma, Praveen K; Singh, Rajesh; Novakovic, Kristian R; Eaton, John W; Grizzle, William E; Singh, Shailesh
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        International journal of cancer. Journal international du cancer
      6. Products :
      7. Volume :
        127
      8. Issue :
        9
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antineoplastic Agents; Apoptosis; Bioware; Caspase 3; Cell Line, Tumor; Chemokines, CC; Disease Progression; Enzyme Activation; Etoposide; Humans; Male; Mice; Mice, Nude; PC-3M-luc; Phosphatidylinositol 3-Kinases; Prostatic Neoplasms; Proto-Oncogene Proteins c-akt; Receptors, CCR; Signal Transduction
      12. Abstract :
        Despite recent advances in treatment and management of prostate cancer (PCa), it remains the second leading cause of cancer-related deaths among men in the US. Chemotherapy is one of the treatment alternatives for hormone refractory metastatic PCa. However, current chemotherapeutic regimens provide palliative benefit but relatively modest survival advantage primarily due to chemo-resistance and upregulated antiapoptotic machineries in PCa cells. Therefore, blocking the mechanisms responsible for suppression of apoptosis might improve current chemotherapeutic regimens. In this study, we show that CC chemokine receptor-9 (CCR9) and its natural ligand CCL25 interaction upregulates antiapoptotic proteins (i.e., PI3K, AKT, ERK1/2 and GSK-3beta) and downregulate activation of caspase-3 in PCa cells. Significant downregulation of these CCR9-mediated antiapoptotic proteins in the presence of a PI3K inhibitor (wortmannin), further suggests that the antiapoptotic action of CCR9 is primarily regulated through PI3K. Furthermore, the cytotoxic effect of etoposide was significantly inhibited in the presence of CCL25, and this inhibitory effect of CCL25 was abrogated when CCR9-CCL25 interaction was blocked using anti-CCR9 monoclonal antibodies. In conformation to these in vitro studies, significant reduction in tumor burden was found in mice receiving CCL25 neutralizing antibodies and etoposide together as compared to both as a single agent. These results suggest that the CCR9-CCL25 axis mediates PI3K/AKT-dependent antiapoptotic signals in PCa cells and could be a possible reason for low apoptosis and modest chemotherapeutic response. Therefore, targeting CCR9-CCL25 axis with cytotoxic agents may provide better therapeutic outcomes than using cytotoxic agents alone.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20127861
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8945
Back to Search
Select All  |  Deselect All