1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

181–190 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Snoeks, T. J.; Khmelinskii, A.; Lelieveldt, B. P.; Kaijzel, E. L.; Lowik, C. W.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Bone
      6. Products :
      7. Volume :
        48
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        OsteoSense, Animals; Bone Neoplasms/radionuclide imaging/*secondary; Diagnostic Imaging/*methods; Forecasting; Optics and Photonics/*trends; Positron-Emission Tomography/methods; Tomography, Emission-Computed, Single-Photon/methods; X-Ray Microtomography/methods; X-Rays
      12. Abstract :
        Optical Imaging has evolved into one of the standard molecular imaging modalities used in pre-clinical cancer research. Bone research however, strongly depends on other imaging modalities such as SPECT, PET, x-ray and muCT. Each imaging modality has its own specific strengths and weaknesses concerning spatial resolution, sensitivity and the possibility to quantify the signal. An increasing number of bone specific optical imaging models and probes have been developed over the past years. This review gives an overview of optical imaging modalities, models and probes that can be used to study skeletal complications of cancer in small laboratory animals.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20688203
      14. Call Number :
        PKI @ kd.modi @ 6
      15. Serial :
        10476
      1. Author :
        Hu, Z.; Gerseny, H.; Zhang, Z.; Chen, Y. J.; Berg, A.; Stock, S.; Seth, P.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Mol Ther
      6. Products :
      7. Volume :
        19
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-luc2, IVIS, Breast Cancer, Bioware
      12. Abstract :
        In recent years, oncolytic adenoviruses have shown some promise as a novel class of antitumor agents. However, their utility in targeting bone metastases is relatively less studied. We have examined whether the systemic therapy of oncolytic adenoviruses expressing the soluble form of transforming growth factor-beta (TGFbeta) receptor II fused with human immunoglobulin G1 can be developed for the treatment of established breast cancer bone metastases. MDA-MB-231-luc2 human breast cancer cells were injected in the left heart ventricle of nude mice to establish bone metastasis. Mice with hind limb tumors were administered (on days 8 and 11) oncolytic adenoviruses-Ad.sTbetaRFc or mhTERTAd.sTbetaRFc. Skeletal tumor growth was monitored weekly by bioluminescence imaging (BLI) and radiography. At the termination time on day 28, hind limb bones were analyzed for tumor burden, synchrotron micro-computed tomography, and osteoclast activation. Intravenous delivery of Ad.sTbetaRFc and mhTERTAd.sTbetaRFc induced significant inhibition of tumor growth, reduction of tumor burden, osteoclast activation, and increased animals' survival. Oncolytic adenoviruses were safer than dl309, a wild-type virus. A slight elevation of liver enzyme activity was observed after Ad.sTbetaRFc administration; this subsided with time. Based on these studies, we believe that Ad.sTbetaRFc and mhTERTAd.sTbetaRFc can be developed as a safe and effective approach for the treatment of established bone metastasis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21712815
      14. Call Number :
        PKI @ kd.modi @ 8
      15. Serial :
        10493
      1. Author :
        Palmer, Kelli L; Aye, Lindsay M; Whiteley, Marvin
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Journal of bacteriology
      6. Products :
      7. Volume :
        189
      8. Issue :
        22
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Adult; Anti-Bacterial Agents; Bacterial Proteins; Bacteriological Techniques; Bioware; Culture Media; Cystic Fibrosis; Gene Expression Profiling; Gene Expression Regulation, Bacterial; Humans; Pseudomonas aeruginosa; Sputum; Staphylococcus aureus; Xen36
      12. Abstract :
        The sputum (mucus) layer of the cystic fibrosis (CF) lung is a complex substrate that provides Pseudomonas aeruginosa with carbon and energy to support high-density growth during chronic colonization. Unfortunately, the CF lung sputum layer has been difficult to mimic in animal models of CF disease, and mechanistic studies of P. aeruginosa physiology during growth in CF sputum are hampered by its complexity. In this study, we performed chromatographic and enzymatic analyses of CF sputum to develop a defined, synthetic CF sputum medium (SCFM) that mimics the nutritional composition of CF sputum. Importantly, P. aeruginosa displays similar phenotypes during growth in CF sputum and in SCFM, including similar growth rates, gene expression profiles, carbon substrate preferences, and cell-cell signaling profiles. Using SCFM, we provide evidence that aromatic amino acids serve as nutritional cues that influence cell-cell signaling and antimicrobial activity of P. aeruginosa during growth in CF sputum.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17873029
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9985
      1. Author :
        Fu, J. Y.; Zhang, W.; Blatchford, D. R.; Tetley, L.; McConnell, G.; Dufes, C.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        J Control Release
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc,
      12. Abstract :
        The therapeutic potential of tocotrienol, a vitamin E extract with anti-cancer properties, is hampered by its failure to specifically reach tumors after intravenous administration. In this work, we demonstrated that novel transferrin-bearing, tocopheryl-based multilamellar vesicles entrapping tocotrienol significantly improved tocotrienol uptake by cancer cells overexpressing transferrin receptors. This led to a dramatically improved therapeutic efficacy in vitro, ranging from 17-fold to 72-fold improvement depending on the cell lines, compared to the free drug. In vivo, the intravenous administration of this novel tocotrienol formulation led to complete tumor eradication for 40% of B16-F10 murine melanoma tumors and 20% of A431 human epidermoid carcinoma tumors. Animal survival was improved by more than 20days compared to controls, for the two tumor models tested. These therapeutic effects, together with the lack of toxicity, potentially make transferrin-bearing vesicles entrapping tocotrienol a highly promising therapeutic system as part as an anti-cancer therapeutic strategy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21539872
      14. Call Number :
        PKI @ kd.modi @ 6
      15. Serial :
        10356
      1. Author :
        Ohlsen, Knut; Lorenz, Udo
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Future microbiology
      6. Products :
      7. Volume :
        2
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Anti-Bacterial Agents; Bioware; Community-Acquired Infections; Humans; Methicillin Resistance; Staphylococcal Infections; Staphylococcus aureus; Xen29
      12. Abstract :
        Multiple resistant staphylococci that cause significant morbidity and mortality are the leading cause of nosocomial infections. Meanwhile, methicillin-resistant Staphylococcus aureus (MRSA) also spreads in the community, where highly virulent strains infect children and young adults who have no predisposing risk factors. Although some treatment options remain, the search for new antibacterial targets and lead compounds is urgently required to ensure that staphylococcal infections can be effectively treated in the future. Promising targets for new antibacterials are gene products that are involved in essential cell functions. In addition to antibacterials, active and passive immunization strategies are being developed that target surface components of staphylococci such as cell wall-linked adhesins, teichoic acids and capsule or immunodominant antigens.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18041906
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9049
      1. Author :
        Houari Korideck; Jeffrey D. Peterson
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Journal of Pharmacology and Experimental Therapeutics
      6. Products :
      7. Volume :
        329
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research; Biology
      11. Keywords :
        in vivo imaging; therapeutics; asthma; pulmonary diseases; noninvasive; infrared imaging; fluorescence molecular tomography; FMT; Fluorescence Imaging Agents
      12. Abstract :
        Animal models of pulmonary inflammation are critical for understanding the pathophysiology of asthma and for developing new therapies. Current conventional assessments in mouse models of asthma and chronic obstructive pulmonary disease rely on invasive measures of pulmonary function and terminal characterization of cells infiltrating into the lung. The ability to noninvasively visualize and quantify the underlying biological processes in mouse pulmonary models in vivo would provide a significant advance in characterizing disease processes and the effects of therapeutics. We report the utility of near-infrared imaging agents, in combination with fluorescence molecular tomography (FMT) imaging, for the noninvasive quantitative imaging of mouse lung inflammation in an ovalbumin (OVA)-induced chronic asthma model. BALB/c mice were intraperitoneally sensitized with OVA-Alum (aluminum hydroxide) at days 0 and 14, followed by daily intranasal challenge with OVA in phosphate-buffered saline from days 21 to 24. Dexamethasone and control therapies were given intraperitoneally 4 h before each intranasal inhalation of OVA from days 21 to 24. Twenty-four hours before imaging, the mice were injected intravenously with 5 nmol of the cathepsin-activatable fluorescent agent, ProSense 680. Quantification by FMT revealed in vivo cysteine protease activity within the lung associated with the inflammatory eosinophilia, which decreased in response to dexamethasone treatment. Results were correlated with in vitro laboratory tests (bronchoalveolar lavage cell analysis and immunohistochemistry) and revealed good correlation between these measures and quantification of ProSense 680 activation. We have demonstrated the ability of FMT to noninvasively visualize and quantify inflammation in the lung and monitor therapeutic efficacy in vivo.
      13. URL :
        http://jpet.aspetjournals.org/content/329/3/882.full
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4473
      1. Author :
        Kadurugamuwa, Jagath L; Sin, Lin V; Yu, Jun; Francis, Kevin P; Purchio, Tony F; Contag, Pamela R
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2004
      5. Publication :
        Antimicrobial agents and chemotherapy
      6. Products :
      7. Volume :
        48
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antibiotics, Antitubercular; Biofilms; Bioware; Colony Count, Microbial; Diagnostic Imaging; DNA-Directed RNA Polymerases; Luminescent Measurements; Mice; Rifampin; Staphylococcal Infections; Staphylococcus aureus; Xen29
      12. Abstract :
        Eradication of Staphylococcus aureus biofilms after rifampin treatment was tested in a mouse model of device-related infection by using biophotonic imaging. Following treatment, the bioluminescent signals decreased to undetectable levels, irrespective of the age of the biofilm. After the final treatment, the signals rebounded in a time-dependent manner and reached those for the untreated mice. Readministration of rifampin was unsuccessful in eradicating reestablished infections, with the rifampin MICs for such bacteria being increased and with the bacteria having point mutations in the rpoB gene.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15155235
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9056
      1. Author :
        Kenneth M Kozloff, Ralph Weissleder and Umar Mahmood
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Journal of Bone and Mineral Research
      6. Products :
      7. Volume :
        22
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        Physiology
      11. Keywords :
        FMT; OsteoSense; ProSense bone mineralization; bone turnover markers; molecular imaging; bisphosphonates; in vivo imaging
      12. Abstract :
        Abstract: FRFP binds to mineral at osteoblastic, osteoclastic, and quiescent surfaces, with accumulation likely modulated by vascular delivery. In vivo visualization and quantification of binding can be accomplished noninvasively in animal models through optical tomographic imaging.

        Introduction: The development of near-infrared optical markers as reporters of bone metabolism will be useful for early diagnosis of disease. Bisphosphonates bind differentially to osteoblastic and osteoclastic surfaces depending on choice of side-chain and dose, and fluorescently tagged bisphosphonates provide a convenient way to visualize these sites. This study examines the ability of a fluorescently labeled pamidronate imaging probe to bind to regions of bone formation and resorption in vivo.

        Materials and Methods: In vitro binding of a far-red fluorescent pamidronate (FRFP) to mineral was assessed using intact and demineralized dentine slices. In vivo, FRFP binding was studied in three models: developing neonatal mouse, bone healing after injury, and metastasis-induced osteolysis and fracture. 3D fluorescence molecular tomographic (FMT) imaging was used to visualize signal deep within the body.

        Results: FRFP binding to bone depends on the quantity of mineral present and can be liberated from the bone during decalcification. In vivo, FRFP binds to surfaces of actively forming bone, as assessed by alkaline phosphatase staining, surfaces undergoing active resorption, as noted by scalloped bone border and presence of osteoclasts, and to quiescent surfaces not involved in formation or resorption. Binding is likely modulated by vascular delivery of the imaging agent to the exposed mineral surface and total quantity of surface exposed.FMT imaging is capable of visualizing regions of bone formation because of a large volume of labeled surface, but like radiolabeled bone scans, cannot discriminate pure osteolysis caused by metastasis.

        Conclusions: FRFP may function as a local biomarker of bisphosphonate deposition to assess interplay between drug and cellular environment or may be combined with other imaging agents or fluorescent cells for the noninvasive assessment of local bone metabolism in vivo.
      13. URL :
        http://onlinelibrary.wiley.com/doi/10.1359/jbmr.070504/references?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nat%20Med&rft.atitle=Shedding%20light%20onto%20live%20molecular%20targets&rft.volume=9&rf
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4530
Back to Search
Select All  |  Deselect All