1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

111–120 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Liu, W. F.; Ma, M.; Bratlie, K. M.; Dang, T. T.; Langer, R.; Anderson, D. G.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Biomaterials
      6. Products :
      7. Volume :
        32
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        ProSense, IVIS, Animals; Biocompatible Materials/*adverse effects; Cells, Cultured; Free Radicals/metabolism; Immunohistochemistry; Male; Mice; Prostheses and Implants/*adverse effects; Reactive Oxygen Species/*metabolism
      12. Abstract :
        The non-specific host response to implanted biomaterials is often a key challenge of medical device design. To evaluate biocompatibility, measuring the release of reactive oxygen species (ROS) produced by inflammatory cells in response to biomaterial surfaces is a well-established method. However, the detection of ROS in response to materials implanted in vivo has not yet been demonstrated. Here, we develop a bioluminescence whole animal imaging approach to observe ROS released in response to subcutaneously-implanted materials in live animals. We compared the real-time generation of ROS in response to two representative materials, polystyrene and alginate, over the course of 28 days. High levels of ROS were observed near polystyrene, but not alginate implants, and persisted throughout the course of 28 days. Histological analysis revealed that high levels of ROS correlated not only with the presence of phagocytic cells at early timepoints, but also fibrosis at later timepoints, suggesting that ROS may be involved in both the acute and chronic phase of the foreign body response. These data are the first in vivo demonstration of ROS generation in response to implanted materials, and describe a novel technique to evaluate the host response.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21146868
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10428
      1. Author :
        Xiong, Y. Q.; Willard, J.; Kadurugamuwa, J. L.; Yu, J.; Francis, K. P.; Bayer, A. S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        Antimicrobial Agents and Chemotherapy
      6. Products :
      7. Volume :
        49
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, Xenogen; Bioware; Xen29
      12. Abstract :
        Therapeutic options for invasive Staphylococcus aureus infections have become limited due to rising antimicrobial resistance, making relevant animal model testing of new candidate agents more crucial than ever. In the present studies, a rat model of aortic infective endocarditis (IE) caused by a bioluminescently engineered, biofilm-positive S. aureus strain was used to evaluate real-time antibiotic efficacy directly. This strain was vancomycin and cefazolin susceptible but gentamicin resistant. Bioluminescence was detected and quantified daily in antibiotic-treated and control animals with IE, using a highly sensitive in vivo imaging system (IVIS). Persistent and increasing cardiac bioluminescent signals (BLS) were observed in untreated animals. Three days of vancomycin therapy caused significant reductions in both cardiac BLS (>10-fold versus control) and S. aureus densities in cardiac vegetations (P < 0.005 versus control). However, 3 days after discontinuation of vancomycin therapy, a greater than threefold increase in cardiac BLS was observed, indicating relapsing IE (which was confirmed by quantitative culture). Cefazolin resulted in modest decreases in cardiac BLS and bacterial densities. These microbiologic and cardiac BLS differences during therapy correlated with a longer time-above-MIC for vancomycin (>12 h) than for cefazolin (?4 h). Gentamicin caused neither a reduction in cardiac S. aureus densities nor a reduction in BLS. There were significant correlations between cardiac BLS and S. aureus densities in vegetations in all treatment groups. These data suggest that bioluminescent imaging provides a substantial advance in the real-time monitoring of the efficacy of therapy of invasive S. aureus infections in live animals.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15743898
      14. Call Number :
        144577
      15. Serial :
        7474
      1. Author :
        Virna Cortez-Retamozo, Filip K. Swirski, Peter Waterman, Hushan Yuan, Jose Luiz Figueiredo, Andita P. Newton, Rabi Upadhyay, Claudio Vinegoni, Rainer Kohler, Joseph Blois, Adam Smith, Matthias Nahrendorf, Lee Josephson, Ralph Weissleder and Mikael J. Pittet
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Journal of Clinical Investigation
      6. Products :
      7. Volume :
        118
      8. Issue :
        12
      9. Page Numbers :
        N/A
      10. Research Area :
        Physiology
      11. Keywords :
        FMT; in vivo imaging; ProSense; MMPSense
      12. Abstract :
        Eosinophils are multifunctional leukocytes that degrade and remodel tissue extracellular matrix through production of proteolytic enzymes, release of proinflammatory factors to initiate and propagate inflammatory responses, and direct activation of mucus secretion and smooth muscle cell constriction. Thus, eosinophils are central effector cells during allergic airway inflammation and an important clinical therapeutic target. Here we describe the use of an injectable MMP-targeted optical sensor that specifically and quantitatively resolves eosinophil activity in the lungs of mice with experimental allergic airway inflammation. Through the use of real-time molecular imaging methods, we report the visualization of eosinophil responses in vivo and at different scales. Eosinophil responses were seen at single-cell resolution in conducting airways using near-infrared fluorescence fiberoptic bronchoscopy, in lung parenchyma using intravital microscopy, and in the whole body using fluorescence-mediated molecular tomography. Using these real-time imaging methods, we confirmed the immunosuppressive effects of the glucocorticoid drug dexamethasone in the mouse model of allergic airway inflammation and identified a viridin-derived prodrug that potently inhibited the accumulation and enzyme activity of eosinophils in the lungs. The combination of sensitive enzyme-targeted sensors with noninvasive molecular imaging approaches permitted evaluation of airway inflammation severity and was used as a model to rapidly screen for new drug effects. Both fluorescence-mediated tomography and fiberoptic bronchoscopy techniques have the potential to be translated into the clinic.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2579705/?tool=pubmed
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4536
      1. Author :
        Engelsman, Anton F; van der Mei, Henny C; Francis, Kevin P; Busscher, Henk J; Ploeg, Rutger J; van Dam, Gooitzen M
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Journal of biomedical materials research. Part B, Applied biomaterials
      6. Products :
      7. Volume :
        88
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Infective Agents; Bacterial Adhesion; Biofilms; Bioware; Chromosomes, Bacterial; Colony Count, Microbial; Disease Models, Animal; Female; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Prostheses and Implants; pXen-5; Soft Tissue Infections; Staphylococcal Infections; Staphylococcus aureus; Xen29
      12. Abstract :
        Infection is the main cause of biomaterials-related failure. A simple technique to test in-vivo new antimicrobial and/or nonadhesive implant coatings is unavailable. Current in vitro methods for studying bacterial adhesion and growth on biomaterial surfaces lack the influence of the host immune system. Most in vivo methods to study biomaterials-related infections routinely involve implant-removal, preventing comprehensive longitudinal monitoring. In vivo imaging circumvents these drawbacks and is based on the use of noninvasive optical imaging of bioluminescent bacteria. Staphylococcus aureus Xen29 is genetically modified to be stably bioluminescent, by the introduction of a modified full lux operon onto its chromosome. Surgical meshes with adhering S. aureus Xen29 were implanted in mice and bacterial growth and spread into the surrounding tissue was monitored longitudinally from bioluminescence with a highly sensitive CCD camera. Distinct spatiotemporal bioluminescence patterns, extending beyond the mesh area into surrounding tissues were observed. After 10 days, the number of living organisms isolated from explanted meshes was found to correlate with bioluminescence prior to sacrifice of the animals. Therefore, it is concluded that in vivo imaging using bioluminescent bacteria is ideally suited to study antimicrobial coatings taking into account the host immune system. In addition, longitudinal monitoring of infection in one animal will significantly reduce the number of experiments and animals.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18618733
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9020
      1. Author :
        Engelsman, A. F.; Mei, H. C. van der; Francis, K. P.; Busscher, H. J.; Ploeg, R. J.; Dam, G. M. van
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        J Biomed Mater Res B Appl Biomater
      6. Products :
      7. Volume :
        88
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; IVIS, Xenogen; Xen29
      12. Abstract :
        Infection is the main cause of biomaterials-related failure. A simple technique to test in-vivo new antimicrobial and/or nonadhesive implant coatings is unavailable. Current in vitro methods for studying bacterial adhesion and growth on biomaterial surfaces lack the influence of the host immune system. Most in vivo methods to study biomaterials-related infections routinely involve implant-removal, preventing comprehensive longitudinal monitoring. In vivo imaging circumvents these drawbacks and is based on the use of noninvasive optical imaging of bioluminescent bacteria. Staphylococcus aureus Xen29 is genetically modified to be stably bioluminescent, by the introduction of a modified full lux operon onto its chromosome. Surgical meshes with adhering S. aureus Xen29 were implanted in mice and bacterial growth and spread into the surrounding tissue was monitored longitudinally from bioluminescence with a highly sensitive CCD camera. Distinct spatiotemporal bioluminescence patterns, extending beyond the mesh area into surrounding tissues were observed. After 10 days, the number of living organisms isolated from explanted meshes was found to correlate with bioluminescence prior to sacrifice of the animals. Therefore, it is concluded that in vivo imaging using bioluminescent bacteria is ideally suited to study antimicrobial coatings taking into account the host immune system. In addition, longitudinal monitoring of infection in one animal will significantly reduce the number of experiments and animals.
      13. URL :
        http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18618733
      14. Call Number :
        137698
      15. Serial :
        7462
      1. Author :
        Leuschner, F.; Rauch, P. J.; Ueno, T.; Gorbatov, R.; Marinelli, B.; Lee, W. W.; Dutta, P.; Wei, Y.; Robbins, C.; Iwamoto, Y.; Sena, B.; Chudnovskiy, A.; Panizzi, P.; Keliher, E.; Higgins, J. M.; Libby, P.; Moskowitz, M. A.; Pittet, M. J.; Swirski, F. K.; Weissleder, R.; Nahrendorf, M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        J Exp Med
      6. Products :
      7. Volume :
        209
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Adoptive Transfer; Animals; Biological Markers/metabolism; Cell Death/genetics; Disease Models, Animal; Female; *Hematopoiesis, Extramedullary; Inflammation/immunology/metabolism; Interleukin-1beta/genetics/metabolism; Kinetics; Macrophages/cytology/*physiology; Mice; Mice, Inbred C57BL; Mice, Knockout; Models, Biological; Monocytes/*cytology/*physiology; Myeloid Cells/metabolism; Myocardial Infarction/immunology/pathology/*physiopathology; Signal Transduction; Spleen/physiology; Stroke/immunology/metabolism; Wound Healing/physiology
      12. Abstract :
        Monocytes (Mo) and macrophages (MPhi) are emerging therapeutic targets in malignant, cardiovascular, and autoimmune disorders. Targeting of Mo/MPhi and their effector functions without compromising innate immunity's critical defense mechanisms first requires addressing gaps in knowledge about the life cycle of these cells. Here we studied the source, tissue kinetics, and clearance of Mo/MPhi in murine myocardial infarction, a model of acute inflammation after ischemic injury. We found that a) Mo tissue residence time was surprisingly short (20 h); b) Mo recruitment rates were consistently high even days after initiation of inflammation; c) the sustained need of newly made Mo was fostered by extramedullary monocytopoiesis in the spleen; d) splenic monocytopoiesis was regulated by IL-1beta; and e) the balance of cell recruitment and local death shifted during resolution of inflammation. Depending on the experimental approach, we measured a 24 h Mo/MPhi exit rate from infarct tissue between 5 and 13% of the tissue cell population. Exited cells were most numerous in the blood, liver, and spleen. Abrogation of extramedullary monocytopoiesis proved deleterious for infarct healing and accelerated the evolution of heart failure. We also detected rapid Mo kinetics in mice with stroke. These findings expand our knowledge of Mo/MPhi flux in acute inflammation and provide the groundwork for novel anti-inflammatory strategies for treating heart failure.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22213805
      14. Call Number :
        PKI @ kd.modi @ 27
      15. Serial :
        10370
      1. Author :
        Kadurugamuwa, J. L.; Sin, L. V.; Yu, J.; Francis, K. P.; Kimura, R.; Purchio, T.; Contag, P. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2003
      5. Publication :
        Antimicrobial Agents and Chemotherapy
      6. Products :
      7. Volume :
        47
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals, Anti-Bacterial Agents/ pharmacology, Bacterial Infections/drug therapy/microbiology, Biofilms/ drug effects/growth & development, Bioware; Catheterization/adverse effects, Chemiluminescent Measurements, Ciprofloxacin/pharmacology, Colony Count, Microbial, Disease Models, Animal, Dose-Response Relationship, Drug, Drug Monitoring/methods, Mice, Rifampin/pharmacology, Staphylococcus aureus/drug effects/genetics/growth & development, Tobramycin/pharmacology IVIS, Xenogen; Xen29
      12. Abstract :
        We have developed a rapid, continuous method for monitoring the effectiveness of several antibacterial agents in real time, noninvasively, by using a recently described mouse model of chronic biofilm infection (J. L. Kadurugamuwa et al., Infect. Immun. 71:882-890, 2003), which relies on biophotonic imaging of bioluminescent bacteria. To facilitate real-time monitoring of infection, we used a Staphylococcus aureus isolate that was made bioluminescent by inserting a modified lux operon into the bacterial chromosome. This bioluminescent reporter bacterium was used to study the antimicrobial effects of several antibiotics belonging to different molecular families. Treatment with rifampin, tobramycin, and ciprofloxacin was started 7 days after subcutaneous implantation of catheters precolonized with 10(4) CFU of S. aureus. Three different doses of antibiotics were administered twice a day for 4 consecutive days. The number of metabolically active bacteria in untreated mice and the tobramycin- and ciprofloxacin-treated groups remained relatively unchanged over the 4-week observation period, indicating poor efficacies for tobramycin and ciprofloxacin. A rapid dose-dependent decline in metabolic activity in rifampin-treated groups was observed, with almost a 90% reduction after two doses and nearly undetectable levels after three doses. The disappearance of light emission correlated with colony counts. After the final treatment, cell numbers rebounded as a function of concentration in a time-dependent manner. The staphylococci isolated from the catheters of mice treated with rifampin were uniformly resistant to rifampin but retained their in vitro susceptibilities to tobramycin and ciprofloxacin. Since the metabolic activities of viable cells and a postantibiotic effect could be detected directly on the support matrix nondestructively and noninvasively, the methodology is specifically appealing for investigating the effects of antibiotics on biofilms in vivo. Moreover, our study points to the possible use of biophotonic imaging for the detection of the development of resistance to therapeutic agents during treatment of chronic infections in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/14506020
      14. Call Number :
        139345
      15. Serial :
        7448
      1. Author :
        Bratlie, K. M.; Dang, T. T.; Lyle, S.; Nahrendorf, M.; Weissleder, R.; Langer, R.; Anderson, D. G.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        5
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Prosense, IVIS, Animals; Biocompatible Materials/*diagnostic use; Diagnostic Imaging/*methods; *Fluorescence; Macrophage Activation; Materials Testing/*methods; Mice; Models, Animal; Peptide Hydrolases/metabolism; Phagocytes
      12. Abstract :
        BACKGROUND: Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop rapid, non-invasive methods for in vivo quantification of the inflammatory response to implanted biomaterials. Materials were placed subcutaneously in an array format and monitored for host responses as per ISO 10993-6: 2001. Host cell activity in response to these materials was imaged kinetically, in vivo using fluorescent whole animal imaging. Data captured using whole animal imaging displayed similar temporal trends in cellular recruitment of phagocytes to the biomaterials compared to histological analysis. CONCLUSIONS/SIGNIFICANCE: Histological analysis similarity validates this technique as a novel, rapid approach for screening biocompatibility of implanted materials. Through this technique there exists the possibility to rapidly screen large libraries of polymers in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20386609
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10427
      1. Author :
        Mortin, Lawrence I; Li, Tongchuan; Van Praagh, Andrew D G; Zhang, Shuxin; Zhang, Xi-Xian; Alder, Jeff D
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Antimicrobial agents and chemotherapy
      6. Products :
      7. Volume :
        51
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Acetamides; Animals; Anti-Bacterial Agents; Bioware; Colony Count, Microbial; Daptomycin; Female; Luminescent Measurements; Methicillin Resistance; Mice; Microbial Sensitivity Tests; Neutropenia; Oxazolidinones; Peritonitis; Staphylococcus aureus; Xen29
      12. Abstract :
        The rising rates of antibiotic resistance accentuate the critical need for new antibiotics. Daptomycin is a new antibiotic with a unique mode of action and a rapid in vitro bactericidal effect against gram-positive organisms. This study examined the kinetics of daptomycin's bactericidal action against peritonitis caused by methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in healthy and neutropenic mice and compared this activity with those of other commonly used antibiotics. CD-1 mice were inoculated intraperitoneally with lethal doses of MSSA (Xen-29) or MRSA (Xen-1), laboratory strains transformed with a plasmid containing the lux operon, which confers bioluminescence. One hour later, the animals were given a single dose of daptomycin at 50 mg/kg of body weight subcutaneously (s.c.), nafcillin at 100 mg/kg s.c., vancomycin at 100 mg/kg s.c., linezolid at 100 mg/kg via gavage (orally), or saline (10 ml/kg s.c.). The mice were anesthetized hourly, and photon emissions from living bioluminescent bacteria were imaged and quantified. The luminescence in saline-treated control mice either increased (neutropenic mice) or remained relatively unchanged (healthy mice). In contrast, by 2 to 3 h postdosing, daptomycin effected a 90% reduction of luminescence of MSSA or MRSA in both healthy and neutropenic mice. The activity of daptomycin against both MSSA and MRSA strains was superior to those of nafcillin, vancomycin, and linezolid. Against MSSA peritonitis, daptomycin showed greater and more rapid bactericidal activity than nafcillin or linezolid. Against MRSA peritonitis, daptomycin showed greater and more rapid bactericidal activity than vancomycin or linezolid. The rapid decrease in the luminescent signal in the daptomycin-treated neutropenic mice underscores the potency of this antibiotic against S. aureus in the immune-suppressed host.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17307984
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9050
Back to Search
Select All  |  Deselect All