1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

401–410 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Kim, J. K.; Won, Y. W.; Lim, K. S.; Kim, Y. H.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Pharm Res
      6. Products :
      7. Volume :
        29
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc, Animals; Antineoplastic Agents/*administration & dosage/pharmacokinetics/therapeutic use; Delayed-Action Preparations/*chemistry; Male; Methylcellulose/*chemistry; Mice; Mice, Inbred C57BL; *Micelles; Neoplasms/drug therapy; Poloxamer/*chemistry; Taxoids/*administration & dosage/pharmacokinetics/therapeutic use
      12. Abstract :
        PURPOSE: To develop low-molecular-weight methylcellulose (LMw MC)-based gel/Pluronic F127 micelle combination system for local and sustained delivery of docetaxel (DTX). METHODS: LMw MC and Pluronic F127 were used to formulate an injectable thermo-reversible gel/micelle combination system containing DTX. The DTX-loaded combination system was characterized and its therapeutic efficacy evaluated in a subcutaneous tumor model. RESULTS: Mixtures of LMw MC, AS, and Pluronic F127 formed gel at ~15-40 degrees C depending on AS concentration. The combination system released DTX for >30 days with a biphasic and sustained release pattern, and DTX stability was maintained during release. The combination system significantly enhanced anti-cancer effects of DTX and prolonged survival of the model mouse in comparison with free DTX. CONCLUSIONS: The LMw MC gel/Pluronic F127 micelle combination system constitutes a promising tool for reducing tumor size and eradicating remaining tumor cells before and after surgery.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21904934
      14. Call Number :
        PKI @ kd.modi @ 16
      15. Serial :
        10531
      1. Author :
        Blagbrough, Ian S; Zara, Chiara
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Pharmaceutical research
      6. Products :
      7. Volume :
        26
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Cats; Cattle; Disease Models, Animal; Dna; Dogs; Drug Delivery Systems; Female; Fishes; Gene Therapy; Horses; Humans; Mice; PC-3M-luc; Pregnancy; Primates; Rats; RNA, Small Interfering; Sheep; Swine
      12. Abstract :
        Nanoparticles, including lipopolyamines leading to lipoplexes, liposomes, and polyplexes are targeted drug carrier systems in the current search for a successful delivery system for polynucleic acids. This review is focused on the impact of gene and siRNA delivery for studies of efficacy, pharmacodynamics, and pharmacokinetics within the setting of the wide variety of in vivo animal models now used. This critical appraisal of the recent literature sets out the different models that are currently being investigated to bridge from studies in cell lines through towards clinical reality. Whilst many scientists will be familiar with rodent (murine, fecine, cricetine, and musteline) models, few probably think of fish as a clinically relevant animal model, but zebrafish, madake, and rainbow trout are all being used. Larger animal models include rabbit, cat, dog, and cow. Pig is used both for the prevention of foot-and-mouth disease and human diseases, sheep is a model for corneal transplantation, and the horse naturally develops arthritis. Non-human primate models (macaque, common marmoset, owl monkey) are used for preclinical gene vector safety and efficacy trials to bridge the gap prior to clinical studies. We aim for the safe development of clinically effective delivery systems for DNA and RNAi technologies.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18841450
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8965
      1. Author :
        Noberini, R.; Koolpe, M.; Lamberto, I.; Pasquale, E. B.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Pharmacol Res
      6. Products :
      7. Volume :
        66
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, B16-F10-luc-G5, B16F10-luc-G5, B16-F10-luc, B16F10-luc, Animals; COS Cells; Catechin/analogs & derivatives/chemistry/pharmacology; Cell Line; Cercopithecus aethiops; Ephrins/*metabolism; Mice; Polyphenols/*chemistry/*pharmacology; Protein Binding/drug effects; Protein Interaction Maps/*drug effects; Receptor, EphA4/antagonists & inhibitors/metabolism; Receptors, Eph Family/antagonists & inhibitors/*metabolism; Signal Transduction/drug effects; Small Molecule Libraries/chemistry/pharmacology; Tea/*chemistry
      12. Abstract :
        Tea contains a variety of bioactive chemicals, such as catechins and other polyphenols. These compounds are thought to be responsible for the health benefits of tea consumption by affecting the function of many cellular targets, not all of which have been identified. In a high-throughput screen for small molecule antagonists of the EphA4 receptor tyrosine kinase, we identified five tea polyphenols that substantially inhibit EphA4 binding to a synthetic peptide ligand. Further characterization of theaflavin monogallates from black tea and epigallocatechin-3,5-digallate from green tea revealed that these compounds at low micromolar concentrations also inhibit binding of the natural ephrin ligands to EphA4 and several other Eph receptors in in vitro assays. The compounds behave as competitive EphA4 antagonists, and their inhibitory activity is affected by amino acid mutations within the ephrin binding pocket of EphA4. In contrast, the major green tea catechin, epigallocatechin-3-gallate (EGCG), does not appear to be an effective Eph receptor antagonist. In cell culture assays, theaflavin monogallates and epigallocatechin-3,5-digallate inhibit ephrin-induced tyrosine phosphorylation (activation) of Eph receptors and endothelial capillary-like tube formation. However, the wider spectrum of Eph receptors affected by the tea derivatives in cells suggests additional mechanisms of inhibition besides interfering with ephrin binding. These results show that tea polyphenols derived from both black and green tea can suppress the biological activities of Eph receptors. Thus, the Eph receptor tyrosine kinase family represents an important class of targets for tea-derived phytochemicals.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22750215
      14. Call Number :
        PKI @ kd.modi @ 17
      15. Serial :
        10533
      1. Author :
        Tanaka, M.; Mroz, P.; Dai, T.; Huang, L.; Morimoto, Y.; Kinoshita, M.; Yoshihara, Y.; Shinomiya, N.; Seki, S.; Nemoto, K.; Hamblin, M. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2013
      5. Publication :
        Photochem Photobiol
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence
      12. Abstract :
        We previously reported that photodynamic therapy (PDT) using intra-articular methylene blue (MB) could be used to treat arthritis in mice caused by bioluminescent methicillin-resistant Staphylococcus aureus (MRSA) either in a therapeutic or in a preventative mode. PDT accumulated neutrophils into the mouse knee via activation of chemoattractants such as inflammatory cytokines or chemokines. In the present study, we asked whether PDT combined with antibiotics used for MRSA could provide added benefit in controlling the infection. We compared MB-PDT alone, systemic administration of either linezolid (LZD) alone or vancomycin (VCM) alone or the combination of PDT with either LZD or VCM. Real-time non-invasive imaging was used to serially follow the progress of the infection. PDT alone was the most effective, while LZD alone was ineffective and VCM alone showed some benefit. Surprisingly the addition of LZD or VCM reduced the therapeutic effect of PDT alone (P<0.05). Considering that PDT in this mouse model stimulates neutrophils to be antibacterial rather than actively killing the bacteria, we propose that LZD and VCM might inhibit the activation of inflammatory cytokines without eradicating the bacteria, and thereby reduce the therapeutic effect of PDT. (c) 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology (c) 2013 The American Society of Photobiology.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23311407
      14. Call Number :
        PKI @ kd.modi @ 6
      15. Serial :
        10558
      1. Author :
        Bisland, Stuart K; Chien, Claudia; Wilson, Brian C; Burch, Shane
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2006
      5. Publication :
        Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology
      6. Products :
      7. Volume :
        5
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Aminolevulinic Acid; Animals; Biofilms; Bioware; Cell Survival; Disease Models, Animal; Drug Evaluation, Preclinical; Female; Implants, Experimental; Light; Luminescent Measurements; Methylene Blue; Osteomyelitis; Photochemotherapy; Photosensitizing Agents; Rats; Rats, Sprague-Dawley; Staphylococcus aureus; Xen29
      12. Abstract :
        Osteomyelitis can lead to severe morbidity and even death resulting from an acute or chronic inflammation of the bone and contiguous structures due to fungal or bacterial infection. Incidence approximates 1 in 1000 neonates and 1 in 5000 children in the United States annually and increases up to 0.36% and 16% in adults with diabetes or sickle cell anaemia, respectively. Current regimens of treatment include antibiotics and/or surgery. However, the increasing number of antibiotic resistant pathogens suggests that alternate strategies are required. We are investigating photodynamic therapy (PDT) as one such alternate treatment for osteomyelitis using a bioluminescent strain of biofilm-producing staphylococcus aureus (S. aureus) grown onto kirschner wires (K-wire). S. aureus-coated K-wires were exposed to methylene blue (MB) or 5-aminolevulinic acid (ALA)-mediated PDT either in vitro or following implant into the tibial medullary cavity of Sprague-Dawley rats. The progression of S. aureus biofilm was monitored non-invasively using bioluminescence and expressed as a percentage of the signal for each sample immediately prior to treatment. S. aureus infections were subject to PDT 10 days post inoculation. Treatment comprised administration of ALA (300 mg kg(-1)) intraperitoneally followed 4 h later by light (635 +/- 10 nm; 75 J cm(-2)) delivered transcutaneously via an optical fiber placed onto the tibia and resulted in significant delay in bacterial growth. In vitro, MB and ALA displayed similar cell kill with > or =4 log(10) cell kill. In vivo, ALA-mediated PDT inhibited biofilm implants in bone. These results confirm that MB or ALA-mediated PDT have potential to treat S. aureus cultures grown in vitro or in vivo using an animal model of osteomyelitis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/16395425
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9054
      1. Author :
        Lambrechts, Saskia A G; Demidova, Tatiana N; Aalders, Maurice C G; Hasan, Tayyaba; Hamblin, Michael R
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology
      6. Products :
      7. Volume :
        4
      8. Issue :
        7
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Burns; Mice; Photochemotherapy; Staphylococcal Infections; Staphylococcus aureus; Xen8.1
      12. Abstract :
        The rise of multiply antibiotic resistant bacteria has led to searches for novel antimicrobial therapies to treat infections. Photodynamic therapy (PDT) is a potential candidate; it uses the combination of a photosensitizer with visible light to produce reactive oxygen species that lead to cell death. We used PDT mediated by meso-mono-phenyl-tri(N-methyl-4-pyridyl)-porphyrin (PTMPP) to treat burn wounds in mice with established Staphylococcus aureus infections The third degree burn wounds were infected with bioluminescent S. aureus. PDT was applied after one day of bacterial growth by adding a 25% DMSO/500 microM PTMPP solution to the wound followed by illumination with red light and periodic imaging of the mice using a sensitive camera to detect the bioluminescence. More than 98% of the bacteria were eradicated after a light dose of 210 J cm(-2) in the presence of PTMPP. However, bacterial re-growth was observed. Light alone or PDT both delayed the wound healing. These data suggest that PDT has the potential to rapidly reduce the bacterial load in infected burns. The treatment needs to be optimized to reduce wound damage and prevent recurrence.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15986057
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9993
      1. Author :
        Ghali, Shadi; Bhatt, Kirit A; Dempsey, Marlese P; Jones, Deidre M; Singh, Sunil; Aarabi, Shahram; Arabi, Shahram; Butler, Peter E; Gallo, Robert L; Gurtner, Geoffrey C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Plastic and reconstructive surgery
      6. Products :
      7. Volume :
        123
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Bioware; Cathelicidins; Chronic Disease; Drug Carriers; Genetic Engineering; Male; Rats; Rats, Inbred F344; Surgical Flaps; Wound Infection; Xen29
      12. Abstract :
        BACKGROUND The success of antimicrobial therapy has been impaired by the emergence of resistant bacterial strains. Antimicrobial peptides are ubiquitous proteins that are part of the innate immune system and are successful against such antibiotic-resistant microorganisms. The authors have previously demonstrated the feasibility of protein delivery via microvascular free flap gene therapy and here they examine this approach for recalcitrant infections. METHODS The authors investigated the production of the human cathelicidin antimicrobial peptide-LL37, delivered by ex vivo transduction of the rodent superficial inferior epigastric free flap with Ad/CMV-LL37. The vascular permeabilizing agent vascular endothelial growth factor (VEGF) was co-administered during ex vivo transduction with adenoviral vectors in an attempt to augment transduction efficiency. A rodent model of chronic wound/foreign body infection seeded with bioluminescent Staphylococcus aureus was used to assess the biological efficacy of delivering therapeutic antimicrobial genes using this technology. RESULTS The authors were successful in demonstrating significant LL37 expression, which persisted for 14 days after ex vivo transduction with Ad/CMV-LL37. Transduction efficiency was significantly improved with the co-administration of 5 micrograms of VEGF during transduction without significantly increasing systemic dissemination of adenovirus or systemic toxicity. They were able to demonstrate in the rodent model of chronic wound/foreign body infections a significant reduction in bacterial loads from infected catheters following transduction with Ad/CMV-LL37 and increased bacterial clearance. CONCLUSION This study demonstrates for the first time that microbicidal gene therapy via microvascular free flaps is able to clear chronic infections such as occurs with osteomyelitis resulting from trauma or an infected foreign body [corrected]
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19337084
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9040
      1. Author :
        Kimberly A. Kelly; Nabeel Bardeesy; Rajesh Anbazhagan; Sushma Gurumurthy; Justin Berger; Herlen Alencar; Ronald A. DePinho; Umar Mahmood; Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        PLoS Medicine
      6. Products :
      7. Volume :
        15
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer; Biology
      11. Keywords :
        in vivo imaging; cancer
      12. Abstract :
        Background: Pancreatic ductal adenocarcinoma (PDAC) carries an extremely poor prognosis, typically presenting with metastasis at the time of diagnosis and exhibiting profound resistance to existing therapies. The development of molecular markers and imaging probes for incipient PDAC would enable earlier detection and guide the development of interventive therapies. Here we sought to identify novel molecular markers and to test their potential as targeted imaging agents.

        Methods and Findings: Here, a phage display approach was used in a mouse model of PDAC to screen for peptides that specifically bind to cell surface antigens on PDAC cells. These screens yielded a motif that distinguishes PDAC cells from normal pancreatic duct cells in vitro, which, upon proteomics analysis, identified plectin-1 as a novel biomarker of PDAC. To assess their utility for in vivo imaging, the plectin-1 targeted peptides (PTP) were conjugated to magnetofluorescent nanoparticles. In conjunction with intravital confocal microscopy and MRI, these nanoparticles enabled detection of small PDAC and precursor lesions in engineered mouse models.

        Conclusions: Our approach exploited a well-defined model of PDAC, enabling rapid identification and validation of PTP. The developed specific imaging probe, along with the discovery of plectin-1 as a novel biomarker, may have clinical utility in the diagnosis and management of PDAC in humans.
      13. URL :
        http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0050085
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4478
Back to Search
Select All  |  Deselect All