1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

451–460 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Cheng, H. H.; Kuo, C. C.; Yan, J. L.; Chen, H. L.; Lin, W. C.; Wang, K. H.; Tsai, K. K.; Guven, H.; Flaberg, E.; Szekely, L.; Klein, G.; Wu, K. K.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Proc Natl Acad Sci U S A
      6. Products :
      7. Volume :
        109
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        A549-luc-C8, A549-luc, IVIS, Bioware, Acetylserotonin O-Methyltransferase/metabolism; Animals; Biocatalysis/drug effects; Cell Line, Tumor; Cell Movement/drug effects; Cell Proliferation/drug effects; Cell Transformation, Neoplastic/drug effects/*pathology; Cyclooxygenase 2/*metabolism; Cyclooxygenase 2 Inhibitors/pharmacology; Fibroblasts/drug effects/metabolism; Humans; Metabolic Networks and Pathways/drug effects; Metabolomics; Mice; Neoplasm Metastasis; Solubility/drug effects; Subcellular Fractions/drug effects/metabolism; Tryptophan/*analogs & derivatives/biosynthesis/metabolism/pharmacology; Tryptophan Hydroxylase/metabolism; Xenograft Model Antitumor Assays
      12. Abstract :
        Cyclooxygenase-2 (COX-2) expression is induced by mitogenic and proinflammatory factors. Its overexpression plays a causal role in inflammation and tumorigenesis. COX-2 expression is tightly regulated, but the mechanisms are largely unclear. Here we show the control of COX-2 expression by an endogenous tryptophan metabolite, 5-methoxytryptophan (5-MTP). By using comparative metabolomic analysis and enzyme-immunoassay, our results reveal that normal fibroblasts produce and release 5-MTP into the extracellular milieu whereas A549 and other cancer cells were defective in 5-MTP production. 5-MTP was synthesized from L-tryptophan via tryptophan hydroxylase-1 and hydroxyindole O-methyltransferase. 5-MTP blocked cancer cell COX-2 overexpression and suppressed A549 migration and invasion. Furthermore, i.p. infusion of 5-MTP reduced tumor growth and cancer metastasis in a murine xenograft tumor model. We conclude that 5-MTP synthesis represents a mechanism for endogenous control of COX-2 overexpression and is a valuable lead for new anti-cancer and anti-inflammatory drug development.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22851770
      14. Call Number :
        PKI @ kd.modi @ 4
      15. Serial :
        10521
      1. Author :
        Goldberg, M. S.; Xing, D.; Ren, Y.; Orsulic, S.; Bhatia, S. N.; Sharp, P. A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Proc Natl Acad Sci U S A
      6. Products :
      7. Volume :
        108
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        VivoTag, IVIS, Vivotag, Animals; BRCA1 Protein/*genetics; Drug Carriers; Drug Delivery Systems; Female; Humans; Mice; Nanoparticles/*chemistry; Nanotechnology/methods; Neoplasm Transplantation; Ovarian Neoplasms/*genetics/*therapy; Poly(ADP-ribose) Polymerases/*genetics; RNA Interference; RNA, Small Interfering/*metabolism; Treatment Outcome
      12. Abstract :
        Inhibition of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP1) with small molecules has been shown to be an effective treatment for ovarian cancer with BRCA mutations. Here, we report the in vivo administration of siRNA to Parp1 in mouse models of ovarian cancer. A unique member of the lipid-like materials known as lipidoids is shown to deliver siRNA to disseminated murine ovarian carcinoma allograft tumors following intraperitoneal (i.p.) injection. siParp1 inhibits cell growth, primarily by induction of apoptosis, in Brca1-deficient cells both in vitro and in vivo. Additionally, the treatment extends the survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells but not from Brca1 wild-type cells, confirming the proposed mechanism of synthetic lethality. Because there are 17 members of the Parp family, the inherent complementarity of RNA affords a high level of specificity for therapeutically addressing Parp1 in the context of impaired homologous recombination.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21187397
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10566
      1. Author :
        Goldberg, M.S.; Xing, D.; Ren, Y.; Orsulic, S.; Bhatia, S.N.; Sharp, P.A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Proceedings of the National Academy of Sciences of the United States of America
      6. Products :
      7. Volume :
        108
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        brca1; Cancer; In vivo imaging (VisEn); IVIS Spectrum imaging system; mice; siRNA; vivotag-750
      12. Abstract :
        Inhibition of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP1) with small molecules has been shown to be an effective treatment for ovarian cancer with BRCA mutations. Here, we report the in vivo administration of siRNA to Parp1 in mouse models of ovarian cancer. A unique member of the lipid-like materials known as lipidoids is shown to deliver siRNA to disseminated murine ovarian carcinoma allograft tumors following intraperitoneal (i.p.) injection. siParp1 inhibits cell growth, primarily by induction of apoptosis, in Brca1-deficient cells both in vitro and in vivo. Additionally, the treatment extends the survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells but not from Brca1 wild-type cells, confirming the proposed mechanism of synthetic lethality. Because there are 17 members of the Parp family, the inherent complementarity of RNA affords a high level of specificity for therapeutically addressing Parp1 in the context of impaired homologous recombination.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21187397
      14. Call Number :
        PKI @ user @ 8448
      15. Serial :
        4805
      1. Author :
        Quintela-Fandino, Miguel; Arpaia, Enrico; Brenner, Dirk; Goh, Theo; Yeung, Faith Au; Blaser, Heiko; Alexandrova, Roumiana; Lind, Evan F; Tusche, Mike W; Wakeham, Andrew; Ohashi, Pamela S; Mak, Tak W
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Proceedings of the National Academy of Sciences of the United States of America
      6. Products :
      7. Volume :
        107
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Actins; Animals; B16-F10-luc-G5; Bioware; Breast Neoplasms; Cell Line, Tumor; Cell Movement; Cofilin 1; Cytoskeleton; Female; Humans; Immunoblotting; Immunoprecipitation; Male; Mammary Neoplasms, Experimental; MDA-MB-231-D3H2LN cells; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Neoplasm Invasiveness; Neoplasm Metastasis; Phosphorylation; Protein Binding; Protein Kinases; Protein Phosphatase 2; Protein-Serine-Threonine Kinases; RNA Interference; Transplantation, Heterologous
      12. Abstract :
        Metastasis leads to the death of most cancer patients, and basal breast cancer is the most aggressive breast tumor type. Metastasis involves a complex cell migration process dependent on cytoskeletal remodeling such that targeting such remodeling in tumor cells could be clinically beneficial. Here we show that Hormonally Up-regulated Neu-associated Kinase (HUNK) is dramatically down-regulated in tumor samples and cell lines derived from basal breast cancers. Reconstitution of HUNK expression in basal breast cancer cell lines blocked actin polymerization and reduced cell motility, resulting in decreased metastases in two in vivo murine cancer models. Mechanistically, HUNK overexpression sustained the constitutive phosphorylation and inactivation of cofilin-1 (CFL-1), thereby blocking the incorporation of new actin monomers into actin filaments. HUNK reconstitution in basal breast cancer cell lines prevented protein phosphatase 2-A (PP2A), a phosphatase putatively acting on CFL-1, from binding to CFL-1. Our investigation of HUNK suggests that the interaction between PP2A and CFL-1 may be a target for antimetastasis therapy, particularly for basal breast cancers.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20133759
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8951
      1. Author :
        Takeshita, Fumitaka; Minakuchi, Yoshiko; Nagahara, Shunji; Honma, Kimi; Sasaki, Hideo; Hirai, Kotaro; Teratani, Takumi; Namatame, Nachi; Yamamoto, Yusuke; Hanai, Koji; Kato, Takashi; Sano, Akihiko; Ochiya, Takahiro
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        Proceedings of the National Academy of Sciences of the United States of America
      6. Products :
      7. Volume :
        102
      8. Issue :
        34
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Bone Neoplasms; Cell Line, Tumor; Collagen; DNA-Binding Proteins; Drug Carriers; Gene Expression Regulation, Neoplastic; Gene Therapy; Humans; Luciferases; Male; Mice; PC-3M-luc; Phosphatidylinositol 3-Kinases; Prostatic Neoplasms; Reverse Transcriptase Polymerase Chain Reaction; RNA, Small Interfering; Transcription Factors
      12. Abstract :
        Silencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis and represents a potential strategy for therapeutic product development. However, there are no reports of systemic delivery for siRNAs toward treatment of bone-metastatic cancer. Accordingly, we report here that i.v. injection of GL3 luciferase siRNA complexed with atelocollagen showed effective reduction of luciferase expression from bone-metastatic prostate tumor cells developed in mouse thorax, jaws, and/or legs. We also show that the siRNA/atelocollagen complex can be efficiently delivered to tumors 24 h after injection and can exist intact at least for 3 days. Furthermore, atelocollagen-mediated systemic administration of siRNAs such as enhancer of zeste homolog 2 and phosphoinositide 3'-hydroxykinase p110-alpha-subunit, which were selected as candidate targets for inhibition of bone metastasis, resulted in an efficient inhibition of metastatic tumor growth in bone tissues. In addition, upregulation of serum IL-12 and IFN-alpha levels was not associated with the in vivo administration of the siRNA/atelocollagen complex. Thus, for treatment of bone metastasis of prostate cancer, an atelocollagen-mediated systemic delivery method could be a reliable and safe approach to the achievement of maximal function of siRNA.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/16091473
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8979
      1. Author :
        Woelfle, Mark A; Xu, Yao; Qin, Ximing; Johnson, Carl Hirschie
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Proceedings of the National Academy of Sciences of the United States of America
      6. Products :
      7. Volume :
        104
      8. Issue :
        47
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; Circadian Rhythm; Cyanobacteria; DNA, Bacterial; DNA, Superhelical; Gene Expression Regulation, Bacterial; Light; Plasmids; Promoter Regions, Genetic; pXen-13; Transcription, Genetic
      12. Abstract :
        The cyanobacterium Synechococcus elongatus expresses robust circadian (daily) rhythms under the control of the KaiABC-based core clockwork. Unlike eukaryotic circadian systems characterized thus far, the cyanobacterial clockwork modulates gene expression patterns globally and specific clock gene promoters are not necessary in mediating the circadian feedback loop. The oscilloid model postulates that global rhythms of transcription are based on rhythmic changes in the status of the cyanobacterial chromosome that are ultimately controlled by the KaiABC oscillator. By using a nonessential, cryptic plasmid (pANS) as a reporter of the superhelical state of DNA in cyanobacteria, we show that the supercoiling status of this plasmid changes in a circadian manner in vivo. The rhythm of topological change in the plasmid is conditional; this change is rhythmic in constant light and in light/dark cycles, but not in constant darkness. In further support of the oscilloid model, cyanobacterial promoters that are removed from their native chromosomal locations and placed on a plasmid preserve their circadian expression patterns.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18000054
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9031
      1. Author :
        Malley, R.; Henneke, P.; Morse, S. C.; Cieslewicz, M. J.; Lipsitch, M.; Thompson, C. M.; Kurt-Jones, E.; Paton, J. C.; Wessels, M. R.; Golenbock, D. T.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2003
      5. Publication :
        Proceedings of the National Academy of Sciences of the United States of America
      6. Products :
      7. Volume :
        100
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, Xenogen, Xen10
      12. Abstract :
        Streptococcus pneumoniae is one of the leading causes of invasive bacterial disease worldwide. Fragments of the cell wall and the cytolytic toxin pneumolysin have been shown to contribute substantially to inflammatory damage, although the interactions between pneumococcal components and host-cell structures have not been elucidated completely. Results of a previous study indicated that cell-wall components of pneumococci are recognized by Toll-like receptor (TLR)2 but suggested that pneumolysin induces inflammatory events independently of this receptor. In this study we tested the hypothesis that pneumolysin interacts with surface proteins of the TLR family other than TLR2. We found that pneumolysin stimulates tumor necrosis factor-? and IL-6 release in wild-type macrophages but not in macrophages from mice with a targeted deletion of the cytoplasmic TLR-adapter molecule myeloid differentiation factor 88, suggesting the involvement of the TLRs in pneumolysin recognition. Purified pneumolysin synergistically activated macrophage responses together with preparations of pneumococcal cell walls or staphylococcal peptidoglycan, which are known to activate TLR2. Furthermore, when compared with wild-type macrophages, macrophages from mice that carry a spontaneous mutation in TLR4 (P712H) were hyporesponsive to both pneumolysin alone and the combination of pneumolysin with pneumococcal cell walls. Finally, these TLR4-mutant mice were significantly more susceptible to lethal infection after intranasal colonization with pneumolysin-positive pneumococci than were control mice. We conclude that the interaction of pneumolysin with TLR4 is critically involved in the innate immune response to pneumococcus.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/12569171
      14. Call Number :
        140854
      15. Serial :
        7487
      1. Author :
        Herzog, E.; Taruttis, A.; Beziere, N.; Lutich, A. A.; Razansky, D.; Ntziachristos, V.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Radiology
      6. Products :
      7. Volume :
        263
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Adenocarcinoma/*diagnosis; Animals; Colonic Neoplasms/*diagnosis; Contrast Media/pharmacokinetics; Disease Models, Animal; Female; Fluorescent Dyes/pharmacokinetics; Gold/pharmacokinetics; Image Processing, Computer-Assisted; Indocyanine Green/pharmacokinetics; Mammary Neoplasms, Experimental/*diagnosis; Mice; Nanoparticles; Spectrum Analysis/methods; Tomography, Optical/*methods
      12. Abstract :
        PURPOSE: To investigate whether multispectral optoacoustic tomography (MSOT) can reveal the heterogeneous distributions of exogenous agents of interest and vascular characteristics through tumors of several millimeters in diameter in vivo. MATERIALS AND METHODS: Procedures involving animals were approved by the government of Upper Bavaria. Imaging of subcutaneous tumors in mice was performed by using an experimental MSOT setup that produces transverse images at 10 frames per second with an in-plane resolution of approximately 150 mum. To study dynamic contrast enhancement, three mice with 4T1 tumors were imaged before and immediately, 20 minutes, 4 hours, and 24 hours after systemic injection of indocyanine green (ICG). Epifluorescence imaging was used for comparison. MSOT of a targeted fluorescent agent (6 hours after injection) and hemoglobin oxygenation was performed simultaneously (4T1 tumors: n = 3). Epifluorescence of cryosections served as validation. The accumulation owing to enhanced permeability and retention in tumors (4T1 tumors: n = 4, HT29 tumors: n = 3, A2780 tumors: n = 2) was evaluated with use of long-circulating gold nanorods (before and immediately, 1 hour, 5 hours, and 24 hours after injection). Dark-field microscopy was used for validation. RESULTS: Dynamic contrast enhancement with ICG was possible. MSOT, in contrast to epifluorescence imaging, showed a heterogeneous intratumoral agent distribution. Simultaneous imaging of a targeted fluorescent agent and oxy- and deoxyhemoglobin gave functional information about tumor vasculature in addition to the related agent uptake. The accumulation of gold nanorods in tumors seen at MSOT over time also showed heterogeneous uptake. CONCLUSION: MSOT enables live high-spatial-resolution observations through tumors, producing images of distributions of fluorochromes and nanoparticles as well as tumor vasculature.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22517960
      14. Call Number :
        PKI @ kd.modi @ 12
      15. Serial :
        10365
Back to Search
Select All  |  Deselect All