1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

311–320 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Tekabe, Y.; Klose, A.; Nizami, S.; Luma, J.; Lee, F. Y.; Johnson, L.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        J Biophotonics
      6. Products :
      7. Volume :
        4
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Antigens, CD31/metabolism; Capillaries/metabolism; Diagnostic Imaging/*methods; Femoral Artery/surgery; Fluorescent Dyes/*diagnostic use/metabolism; Hindlimb/*blood supply/metabolism/pathology; Integrin alphaV/metabolism; Integrin alphaVbeta3/antagonists & inhibitors/metabolism; Ischemia/*pathology; Ligation; Male; Mice; Mice, Inbred Strains; Microscopy, Fluorescence; *Neovascularization, Physiologic; Plant Lectins/metabolism; Sensitivity and Specificity
      12. Abstract :
        Optical agents targeting alpha(v)beta(3) are potential tools to image the angiogenic response to limb ischemia. The left (L) femoral artery was ligated in 17 mice and sham surgery performed on the contralateral right (R) hindlimb. Seven days later, IntegriSense (2 nmol) was injected into 11 mice and 6 were probe controls. Six hours later, mice underwent optical imaging. Ratios of photon flux in the L/R limbs were calculated. Tissue was stained for alpha(v) , CD31, and lectin. The signal was increased in the ischemic limbs compared to contralateral legs and ratio of photon flux in L/R limb averaged 2.37. Control probe showed no hindlimb signal. IntegriSense colocalized with CD31 by dual fluorescent staining. Ratios for L/R hindlimbs correlated with quantitative lectin staining (r = 0.88, p = 0.003). Optical imaging can identify and quantify angiogenic response to hindlimb ischemia.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22031282
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10380
      1. Author :
        Themelis, G.; Harlaar, N. J.; Kelder, W.; Bart, J.; Sarantopoulos, A.; van Dam, G. M.; Ntziachristos, V.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Ann Surg Oncol
      6. Products :
      7. Volume :
        18
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Cell Line, Tumor; *Diagnostic Imaging; Female; Fluorescence; Fluorescent Dyes/*diagnostic use; Humans; Integrin alphaVbeta3/*metabolism; Luciferases/metabolism; Mammary Neoplasms, Experimental/*diagnosis/metabolism; Mice; Mice, Nude; Spectroscopy, Near-Infrared
      12. Abstract :
        BACKGROUND: This study was designed to improve the surgical procedure and outcome of cancer surgery by means of real-time molecular imaging feedback of tumor spread and margin delineation using targeted near-infrared fluorescent probes with specificity to tumor biomarkers. Surgical excision of cancer often is confronted with difficulties in the identification of cancer spread and the accurate delineation of tumor margins. Currently, the assessment of tumor borders is afforded by postoperative pathology or, less reliably, intraoperative frozen sectioning. Fluorescence imaging is a natural modality for intraoperative use by directly relating to the surgeon's vision and offers highly attractive characteristics, such as high-resolution, sensitivity, and portability. Via the use of targeted probes it also becomes highly tumor-specific and can lead to significant improvements in surgical procedures and outcome. METHODS: Mice bearing xenograft human tumors were injected with alphavbeta3-integrin receptor-targeted fluorescent probe and in vivo visualized by using a novel, real-time, multispectral fluorescence imaging system. Confirmatory ex vivo imaging, bioluminescence imaging, and histopathology were used to validate the in vivo findings. RESULTS: Fluorescence images were all in good correspondence with the confirming bioluminescence images in respect to signal colocalization. Fluorescence imaging detected all tumors and successfully guided total tumor excision by effectively detecting small tumor residuals, which occasionally were missed by the surgeon. Tumor tissue exhibited target-to-background ratio of ~4.0, which was significantly higher compared with white-light images representing the visual contrast. Histopathology confirmed the capability of the method to identify tumor negative margins with high specificity and better prediction rate compared with visual inspection. CONCLUSIONS: Real-time multispectral fluorescence imaging using tumor specific molecular probes is a promising modality for tumor excision by offering real time feedback to the surgeon in the operating room.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21509632
      14. Call Number :
        PKI @ kd.modi @ 11
      15. Serial :
        10381
      1. Author :
        Tsurumi, C.; Esser, N.; Firat, E.; Gaedicke, S.; Follo, M.; Behe, M.; Elsasser-Beile, U.; Grosu, A. L.; Graeser, R.; Niedermann, G.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        5
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Antigens, CD/*biosynthesis/*metabolism; Flow Cytometry/methods; Glioma/metabolism; Glycoproteins/*biosynthesis/*metabolism; Humans; Hybridomas/metabolism; Mice; Mice, Transgenic; Models, Biological; Neoplasm Metastasis; Neoplasm Transplantation; Neoplasms/*metabolism; Neoplastic Stem Cells; Peptides/*metabolism; Recurrence
      12. Abstract :
        BACKGROUND: Cancer stem cells are thought to play a pivotal role in tumor maintenance, metastasis, tumor therapy resistance and relapse. Hence, the development of methods for non-invasive in vivo detection of cancer stem cells is of great importance. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe successful in vivo detection of CD133/prominin, a cancer stem cell surface marker for a variety of tumor entities. The CD133-specific monoclonal antibody AC133.1 was used for quantitative fluorescence-based optical imaging of mouse xenograft models based on isogenic pairs of CD133 positive and negative cell lines. A first set consisted of wild-type U251 glioblastoma cells, which do not express CD133, and lentivirally transduced CD133-overexpressing U251 cells. A second set made use of HCT116 colon carcinoma cells, which uniformly express CD133 at levels comparable to primary glioblastoma stem cells, and a CD133-negative HCT116 derivative. Not surprisingly, visualization and quantification of CD133 in overexpressing U251 xenografts was successful; more importantly, however, significant differences were also found in matched HCT116 xenograft pairs, despite the lower CD133 expression levels. The binding of i.v.-injected AC133.1 antibodies to CD133 positive, but not negative, tumor cells isolated from xenografts was confirmed by flow cytometry. CONCLUSIONS/SIGNIFICANCE: Taken together, our results show that non-invasive antibody-based in vivo imaging of tumor-associated CD133 is feasible and that CD133 antibody-based tumor targeting is efficient. This should facilitate developing clinically applicable cancer stem cell imaging methods and CD133 antibody-based therapeutics.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21187924
      14. Call Number :
        PKI @ kd.modi @ 15
      15. Serial :
        10382
      1. Author :
        Valdivia, Y. Alvarado M.; Wong, K.; Cheng He, T.; Xue, Z.; Wong, S. T.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        J Vasc Interv Radiol
      6. Products :
      7. Volume :
        22
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Cell Line, Tumor; Fiber Optic Technology/*methods; Fluorescent Dyes/*administration & dosage/*diagnostic use; Humans; Injections, Intralesional; Lung Neoplasms/*pathology; Microscopy, Fluorescence/*methods; Molecular Imaging/*methods; Rabbits; Surgery, Computer-Assisted/*methods; Tomography, X-Ray Computed/methods
      12. Abstract :
        PURPOSE: To show the feasibility of computed tomography (CT) image-guided fiberoptic confocal fluorescence molecular imaging in a rabbit lung tumor model. MATERIALS AND METHODS: Eight lung tumor models were created by injection of a VX2 cell suspension. The fluorescent imaging agent IntegriSense 680 was given to the animals 3.5-4 hours before the procedure. CT images were obtained and transferred to the minimally invasive multimodality image-guided (MIMIG) system as a guidance map. A real-time electromagnetically tracked needle was inserted under the visual guidance of the MIMIG system. A second CT image was obtained to confirm the location of the needle tip. Next, fiberoptic fluorescence imaging was acquired along the needle track. Finally, tumor samples were obtained for histopathologic confirmation. RESULTS: All cases were performed during breath-hold. Tumor size was 12.5 mm +/- 1.6; the distance from the chest wall was 2.1 mm +/- 0.5. The needle tip reached the tumor in all cases with an accuracy of 3.3 mm +/- 1.6. Only one skin entry point was necessary, and no needle adjustments were required. No pneumothorax was observed. At least two-fold alpha(v)beta(3) integrin image contrast was detected in the tumor compared with normal lung tissue. Tumor samples were confirmed to have viable VX2 cells and contrast uptake. CONCLUSIONS: The MIMIG system enables effective in situ fluorescence molecular imaging in a needle biopsy lung procedure. In situ alpha(v)beta(3) integrin molecular imaging allows molecular characterization of lung tumors at multiple regions and can be used to guide biopsy procedures.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22019854
      14. Call Number :
        PKI @ kd.modi @ 14
      15. Serial :
        10383
      1. Author :
        van der Horst, G.; van der Pluijm, G.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Future Oncol
      6. Products :
      7. Volume :
        8
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Bone Neoplasms/*diagnosis/*secondary; Diagnostic Imaging/*methods; Disease Models, Animal; Disease Progression; Humans; Molecular Imaging/methods; Neoplasm Metastasis/diagnosis
      12. Abstract :
        Bone metastasis is a complex process that ultimately leads to devastating metastatic bone disease. It is therefore of key interest to unravel the mechanisms underlying the multistep process of skeletal metastasis and cancer-induced bone disease, and to develop better treatment and management of patients with this devastating disease. Fortunately, novel technologies are rapidly emerging that allow real-time imaging of molecules, pathogenic processes, drug delivery and drug response in preclinical in vivo models. The outcome of these experimental studies will facilitate clinical cancer research by improving the detection of cancer cell invasion, metastasis and therapy response.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22515445
      14. Call Number :
        PKI @ kd.modi @ 30
      15. Serial :
        10384
      1. Author :
        Waldner, M. J.; Wirtz, S.; Jefremow, A.; Warntjen, M.; Neufert, C.; Atreya, R.; Becker, C.; Weigmann, B.; Vieth, M.; Rose-John, S.; Neurath, M. F.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        J Exp Med
      6. Products :
      7. Volume :
        207
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Blotting, Western; Cell Proliferation/drug effects; Cells, Cultured; Colitis/chemically induced/complications; Colonic Neoplasms/etiology/genetics/*metabolism; Dextran Sulfate; Endothelial Cells/metabolism; Epithelial Cells/metabolism; Gene Expression; Humans; Immunohistochemistry; Inflammatory Bowel Diseases/genetics/*metabolism; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Microscopy, Confocal; Reverse Transcriptase Polymerase Chain Reaction; STAT3 Transcription Factor/genetics/metabolism; *Signal Transduction; Up-Regulation; Vascular Endothelial Growth Factor A/genetics/metabolism/pharmacology; Vascular Endothelial Growth Factor Receptor-1/genetics/metabolism; Vascular Endothelial Growth Factor Receptor-2/genetics/*metabolism
      12. Abstract :
        Whereas the inhibition of vascular endothelial growth factor (VEGF) has shown promising results in sporadic colon cancer, the role of VEGF signaling in colitis-associated cancer (CAC) has not been addressed. We found that, unlike sporadic colorectal cancer and control patients, patients with CAC show activated VEGFR2 on intestinal epithelial cells (IECs). We then explored the function of VEGFR2 in a murine model of colitis-associated colon cancer characterized by increased VEGFR2 expression. Epithelial cells in tumor tissue expressed VEGFR2 and responded to VEGF stimulation with augmented VEGFR2-mediated proliferation. Blockade of VEGF function via soluble decoy receptors suppressed tumor development, inhibited tumor angiogenesis, and blocked tumor cell proliferation. Functional studies revealed that chronic inflammation leads to an up-regulation of VEGFR2 on IECs. Studies in conditional STAT3 mutant mice showed that VEGFR signaling requires STAT3 to promote epithelial cell proliferation and tumor growth in vivo. Thus, VEGFR-signaling acts as a direct growth factor for tumor cells in CAC, providing a molecular link between inflammation and the development of colon cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21098094
      14. Call Number :
        PKI @ kd.modi @ 34
      15. Serial :
        10385
      1. Author :
        Zhang, X.; Bloch, S.; Akers, W.; Achilefu, S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Curr Protoc Cytom
      6. Products :
      7. Volume :
        Chapter 12
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Cell Line, Tumor; Diagnostic Imaging/*methods; Fluorescent Dyes/chemistry/metabolism; Humans; Mice; Molecular Probes/*diagnostic use; Nanoparticles/chemistry; Quantum Dots; Spectroscopy, Near-Infrared/*methods
      12. Abstract :
        Cellular and tissue imaging in the near-infrared (NIR) wavelengths between 700 and 900 nm is advantageous for in vivo imaging because of the low absorption of biological molecules in this region. This unit presents protocols for small animal imaging using planar and fluorescence lifetime imaging techniques. Included is an overview of NIR fluorescence imaging of cells and small animals using NIR organic fluorophores, nanoparticles, and multimodal imaging probes. The development, advantages, and application of NIR fluorescent probes that have been used for in vivo imaging are also summarized. The use of NIR agents in conjunction with visible dyes and considerations in selecting imaging agents are discussed. We conclude with practical considerations for the use of these dyes in cell and small animal imaging applications.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22470154
      14. Call Number :
        PKI @ kd.modi @ 24
      15. Serial :
        10386
      1. Author :
        Lu, Z.; Dai, T.; Huang, L.; Kurup, D. B.; Tegos, G. P.; Jahnke, A.; Wharton, T.; Hamblin, M. R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Nanomedicine (Lond)
      6. Products :
      7. Volume :
        5
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen5, Xen 5, Pseudomonas aeruginosa Xen 5, Animals; Fullerenes/*chemistry; Male; Mice; Mice, Inbred BALB C; Photochemotherapy/*methods; Photosensitizing Agents/*chemistry; Pseudomonas Infections/*drug therapy; Pseudomonas aeruginosa/drug effects; Wound Infection/*drug therapy
      12. Abstract :
        AIMS: Fullerenes are under intensive study for potential biomedical applications. We have previously reported that a C60 fullerene functionalized with three dimethylpyrrolidinium groups (BF6) is a highly active broad-spectrum antimicrobial photosensitizer in vitro when combined with white-light illumination. We asked whether this high degree of in vitro activity would translate into an in vivo therapeutic effect in two potentially lethal mouse models of infected wounds. MATERIALS & METHODS: We used stable bioluminescent bacteria and a low light imaging system to follow the progress of the infection noninvasively in real time. An excisional wound on the mouse back was contaminated with one of two bioluminescent Gram-negative species, Proteus mirabilis (2.5 x 10(7) cells) and Pseudomonas aeruginosa (5 x 10(6) cells). A solution of BF6 was placed into the wound followed by delivery of up to 180 J/cm(2) of broadband white light (400-700 nm). RESULTS: In both cases there was a light-dose-dependent reduction of bioluminescence from the wound not observed in control groups (light alone or BF6 alone). Fullerene-mediated photodynamic therapy of mice infected with P. mirabilis led to 82% survival compared with 8% survival without treatment (p < 0.001). Photodynamic therapy of mice infected with highly virulent P. aeruginosa did not lead to survival, but when photodynamic therapy was combined with a suboptimal dose of the antibiotic tobramycin (6 mg/kg for 1 day) there was a synergistic therapeutic effect with a survival of 60% compared with a survival of 20% with tobramycin alone (p < 0.01). CONCLUSION: These data suggest that cationic fullerenes have clinical potential as an antimicrobial photosensitizer for superficial infections where red light is not needed to penetrate tissue.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21143031
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10390
      1. Author :
        Leszczynska, K.; Namiot, A.; Cruz, K.; Byfield, F. J.; Won, E.; Mendez, G.; Sokolowski, W.; Savage, P. B.; Bucki, R.; Janmey, P. A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        J Appl Microbiol
      6. Products :
      7. Volume :
        110
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen5, Xen 5, Pseudomonas aeruginosa Xen 5, Anti-Bacterial Agents/administration & dosage/*pharmacology/therapeutic; use; Antimicrobial Cationic Peptides/chemistry; Biofilms/drug effects; Cholic Acid/chemistry; Cystic Fibrosis/microbiology; Hemolysis/drug effects; Humans; *Poloxamer; Pseudomonas Infections/drug therapy; Pseudomonas aeruginosa/drug effects/growth & development; Skin Diseases, Bacterial/drug therapy; Staphylococcus aureus/drug effects; Steroids/administration & dosage/*pharmacology/therapeutic use; *Surface-Active Agents
      12. Abstract :
        AIMS: Ceragenin CSA-13 is a synthetic mimic of cationic antibacterial peptides, with facial amphiphilic morphology reproduced using a cholic acid scaffold. Previous data have shown that this molecule displays broad-spectrum antibacterial activity, which decreases in the presence of blood plasma. However, at higher concentrations, CSA-13 can cause lysis of erythrocytes. This study was designed to assess in vitro antibacterial and haemolytic activity of CSA-13 in the presence of pluronic F-127. METHODS AND RESULTS: CSA-13 bactericidal activity against clinical strains of bacteria associated with topical infections and in an experimental setting relevant to their pathophysiological environment, such as various epithelial tissue fluids and the airway sputum of patients suffering from cystic fibrosis (CF), was evaluated using minimum inhibitory and minimum bactericidal concentration (MIC/MBC) measurements and bacterial killing assays. We found that in the presence of pluronic F-127, CSA-13 antibacterial activity was only slightly decreased, but CSA-13 haemolytic activity was significantly inhibited. CSA-13 exhibits bacterial killing activity against clinical isolates of Staphylococcus aureus, including methicillin-resistant strains, Pseudomonas aeruginosa present in CF sputa, and biofilms formed by different Gram (+) and Gram (-) bacteria. CSA-13 bactericidal action is partially compromised in the presence of plasma, but is maintained in ascites, cerebrospinal fluid, saliva, and bronchoalveolar lavage fluid. The synergistic action of CSA-13, determined by the use of a standard checkerboard assay, reveals an increase in CSA-13 antibacterial activity in the presence of host defence molecules such as the cathelicidin LL-37 peptide, lysozyme, lactoferrin and secretory phospholipase A (sPLA). CONCLUSION: These results suggest that CSA-13 may be useful to prevent and treat topical infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Combined application of CSA-13 with pluronic F-127 may be beneficial by reducing CSA-13 toxicity.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20961363
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10389
      1. Author :
        Lamppa, J. W.; Ackerman, M. E.; Lai, J. I.; Scanlon, T. C.; Griswold, K. E.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        6
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen5, Xen 5, Pseudomonas aeruginosa Xen 5
      12. Abstract :
        Alginate lyase enzymes represent prospective biotherapeutic agents for treating bacterial infections, particularly in the cystic fibrosis airway. To effectively deimmunize one therapeutic candidate while maintaining high level catalytic proficiency, a combined genetic engineering-PEGylation strategy was implemented. Rationally designed, site-specific PEGylation variants were constructed by orthogonal maleimide-thiol coupling chemistry. In contrast to random PEGylation of the enzyme by NHS-ester mediated chemistry, controlled mono-PEGylation of A1-III alginate lyase produced a conjugate that maintained wild type levels of activity towards a model substrate. Significantly, the PEGylated variant exhibited enhanced solution phase kinetics with bacterial alginate, the ultimate therapeutic target. The immunoreactivity of the PEGylated enzyme was compared to a wild type control using in vitro binding studies with both enzyme-specific antibodies, from immunized New Zealand white rabbits, and a single chain antibody library, derived from a human volunteer. In both cases, the PEGylated enzyme was found to be substantially less immunoreactive. Underscoring the enzyme's potential for practical utility, >90% of adherent, mucoid, Pseudomonas aeruginosa biofilms were removed from abiotic surfaces following a one hour treatment with the PEGylated variant, whereas the wild type enzyme removed only 75% of biofilms in parallel studies. In aggregate, these results demonstrate that site-specific mono-PEGylation of genetically engineered A1-III alginate lyase yielded an enzyme with enhanced performance relative to therapeutically relevant metrics.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21340021
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10388
Back to Search
Select All  |  Deselect All