1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

441–450 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Vintonenko, N.; Jais, J. P.; Kassis, N.; Abdelkarim, M.; Perret, G. Y.; Lecouvey, M.; Crepin, M.; Di Benedetto, M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Mol Pharmacol
      6. Products :
      7. Volume :
        82
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-luc-D3H2Ln, D3H2Ln, IVIS, Breast cancer, Bioware
      12. Abstract :
        Statins and bisphosphonates are two distinct classes of isoprenoid pathway inhibitors targeting downstream enzyme to HMG-CoA reductase (upstream enzyme) and farnesyl-pyrophosphate synthase, respectively. Here, we studied fluvastatin (Fluva) and zoledronate (Zol), representative molecules of each class, respectively. In vivo metastatic potentials of both molecules were assessed. For the first time, we observed a significant reduction in progression of established metastases with Fluva treatment. Treatment with both Zol at 100 mug/kg and Fluva at 15 mg/kg inhibited 80% of the metastasis bioluminescence signal and increased survival of mice. The Zol and Fluva transcriptomic profiles of treated MDA-MB-231 cells revealed analogous patterns of affected genes, but each of them reached with different kinetics. The observable changes in gene expression started after 24 h for Fluva IC(50 72 h) and only after 48 h for Zol IC(50 72 h). To obtain early changes in gene expression of Zol-treated cells, a 3 times higher dose of Zol IC(50 72 h) had to be applied. Combining Fluva and Zol in vivo showed no synergy, but a benefit of several days in survival of mice. This study demonstrated that Zol or Fluva is of potential clinical use for the treatment of established metastasis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22723339
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10509
      1. Author :
        Wang, M.; Gartel, A. L.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Cancer Biol Ther
      6. Products :
      7. Volume :
        13
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-luc-D3H2Ln, D3H2Ln, IVIS, Breast cancer, Bioware, Adenocarcinoma/*drug therapy/pathology; Animals; Antineoplastic Combined Chemotherapy; Protocols/pharmacokinetics/pharmacology/*therapeutic use; Apoptosis; Boronic Acids/administration & dosage; Breast Neoplasms/*drug therapy/pathology; Cell Line, Tumor; Drug Synergism; Female; Humans; Male; Mice; Mice, Nude; Nanocapsules/administration & dosage; Proteasome Endopeptidase Complex/metabolism; Pyrazines/administration & dosage; Random Allocation; Thiostrepton/administration & dosage; Tissue Distribution; Tumor Burden/drug effects; Xenograft Model Antitumor Assays
      12. Abstract :
        Bortezomib is well-known for inducing cell death in cancer cells, specifically through the mechanism of proteasome inhibition. Thiostrepton, a thiazole antibiotic, has also been described for its proteasome inhibitory action, although differing slightly to bortezomib in the proteasomal site to which it is active. Previously we had shown the synergic effect of bortezomib and thiostrepton in breast cancer cells in vitro, where sub-apoptotic concentrations of both proteasome inhibitors resulted in synergic increase in cell death when combined as a treatment. Here, we administered such a combination to MDA-MB-231 xenograft tumors in vivo, and found that the effect of complementary proteasome inhibitors reduced tumor growth rates more efficiently than compared with when administered alone. Increased induction of apoptotic activity in tumors was found be associated with the growth inhibitory activity of combination treatment. Further examination additionally revealed that combination-treated tumors exhibited reduced proteasome activity, compared with non-treated and single drug-treated tumors. These data suggest that this drug combination may be useful as a therapy for solid tumors.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22353937
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10510
      1. Author :
        Akudugu, J. M.; Azzam, E. I.; Howell, R. W.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Int J Radiat Biol
      6. Products :
      7. Volume :
        88
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-D3H1, MDA-MB-231-luc-D3H1, IVIS, Bioware, Breast Cancer
      12. Abstract :
        Abstract Purpose: This study uses a three-dimensional cell culture model to investigate lethal bystander effects in human breast cancer cell cultures (MCF-7, MDA-MB-231) treated with (125)I-labeled 5-iodo-2 -deoxyuridine ((125)IdU). These breast cancer cell lines respectively form metastatic xenografts in nude mice in an estrogen-dependent and independent manner. Materials and methods: In the present study, these cells were cultured in loosely-packed three-dimensional architecture in a Cytomatrix carbon scaffold. Cultures were pulse-labeled for 3 h with (125)IdU to selectively irradiate a minor fraction of cells, and simultaneously co-pulse-labeled with 0.04 mM 5-ethynyl-2'-deoxyuridine (EdU) to identify the radiolabeled cells using Click-iT((R)) EdU and flow cytometry. The cultures were then washed and incubated for 48 h. The cells were then harvested, serially diluted, and seeded for colony formation. Aliquots of cells were subjected to flow cytometry to determine the percentage of cells labeled with (125)IdU/EdU. Additional aliquots were used to determine the mean (125)I activity per labeled cell. The percentage of labeled cells was about 15% and 10% for MCF-7 and MDA cells, respectively. This created irradiation conditions wherein the cross-dose to unlabeled cells was small relative to the self-dose to labeled cells. The surviving fraction relative to EdU-treated controls was measured. Results: Survival curves indicated significant lethal bystander effect in MCF-7 cells, however, no significant lethal bystander effect was observed in MDA-MB-231 cells. Conclusions: These studies demonstrate the capacity of (125)IdU to induce lethal bystander effects in human breast cancer cells and suggest that the response depends on phenotype.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22489958
      14. Call Number :
        PKI @ kd.modi @ 6
      15. Serial :
        10514
      1. Author :
        Liang, H.; Ma, S. Y.; Mohammad, K.; Guise, T. A.; Balian, G.; Shen, F. H.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Spine (Phila Pa 1976)
      6. Products :
      7. Volume :
        36
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-D3H1, MDA-MB-231-luc-D3H1, IVIS, Bioware, Breast Cancer
      12. Abstract :
        STUDY DESIGN: In vivo experiments to develop a rat spine single metastasis model by using human breast cancer cells. OBJECTIVE: To study the survival and tumorigenesis of the human breast cancer cells after transplantation to vertebral body (VB) by intraosseous injection as a model for therapeutic studies of spine metastatic tumor. SUMMARY OF BACKGROUND DATA: VBs are the most common bones involved in the metastases of breast cancer. To develop experimental therapeutics requires an appropriate animal model. Moreover, it is also important to establish accurate and sensitive detection methods for the evaluation. METHODS: MDA-MB-231 human breast cancer cells were injected into 3-week-old female athymic rats. The tumorigenesis was assayed with quantitative in vivo bioluminescence (IVIS), microcomputed tomography (micro-CT), quantitative CT (qCT), micro position emission tomography (micro-PET), and histologic studies. RESULTS: A spine single metastasis model of human breast cancer was successfully developed in rats. The IVIS signal intensity from the cancer cells increased after 2 weeks. Signal from the tumor in spine can be detected by micro-PET at day 1. The signal intensity decreased after 1 week and then recovered and continually increased afterwards. Bone destruction was demonstrated in the qCT and micro-CT images. However, both qCT and micro-CT found that the bone density in the cancer cell-injected VB increased before the appearance of osteolysis. The growth of tumor and the reaction of bone in the VB were observed simultaneously by histology. CONCLUSION: A spine single metastasis model was developed by injection of human breast cancer cells into the VB of athymic rats. This is the first report of quantitative evaluation with micro-PET in a spine metastasis model. In addition, the detection of osteogenesis after the introduction of MDA-MB-231 cells in vivo is a novel observation.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21422981
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10515
      1. Author :
        O'Connor, A. E.; Mc Gee, M. M.; Likar, Y.; Ponomarev, V.; Callanan, J. J.; O'Shea D, F.; Byrne, A. T.; Gallagher, W. M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Int J Cancer
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-D3H1, MDA-MB-231-luc-D3H1, IVIS, Bioware, Breast Cancer
      12. Abstract :
        Photodynamic therapy (PDT) is an established treatment modality for cancer. ADPM06 is an emerging non-porphyrin PDT agent which has been specifically designed for therapeutic application. Recently, we have demonstrated that ADPM06-PDT is well tolerated in vivo and elicits impressive complete response rates in various models of cancer when a short drug-light interval is applied. Herein, the mechanism of action of ADPM06-PDT in vitro and in vivo is outlined. Using a drug and light combination that reduces the clonogenicity of MDA-MB-231 cells by >90%, we detected a well-orchestrated apoptotic response accompanied by the activation of various caspases in vitro. The generation of reactive oxygen species (ROS) upon photosensitizer irradiation was found to be the key instigator in the observed apoptotic response, with the endoplasmic reticulum (ER) found to be the intracellular site of initial PDT damage, as determined by induction of a rapid ER stress response post-PDT. PDT-induced apoptosis was also found to be independent of p53 tumor suppressor status. A robust therapeutic response in vivo was demonstrated, with a substantial reduction in tumor proliferation observed, as well as a rapid induction of apoptosis and initiation of ER stress, mirroring numerous aspects of the mechanism of action of ADPM06 in vitro. Finally, using a combination of (18) F-labeled 3'-deoxy-3'-fluorothymidine ((18) F-FLT) nuclear and optical imaging, a considerable decrease in tumor proliferation over 24-hr in two models of human cancer was observed. Taken together, this data clearly establishes ADPM06 as an exciting novel PDT agent with significant potential for further translational development.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21413012
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10516
      1. Author :
        Ran, C.; Zhang, Z.; Hooker, J.; Moore, A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Mol Imaging Biol
      6. Products :
      7. Volume :
        14
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-D3H1, MDA-MB-231-luc-D3H1, IVIS, Bioware, Breast Cancer. Animals; Cell Line, Tumor; Chromatography, Liquid; Diagnostic Imaging/*methods; *Elementary Particles; Firefly Luciferin/chemistry/metabolism; Fluorodeoxyglucose F18/diagnostic use; Humans; *Light; Luminescent Measurements; Mass Spectrometry; Mice; Mice, Nude; Solutions
      12. Abstract :
        PURPOSE: The poor tissue penetration of visible light has been a major barrier for optical imaging, photoactivatable conversions, and photodynamic therapy for in vivo targets with depths beyond 10 mm. In this report, as a proof-of-concept, we demonstrated that a positron emission tomography (PET) radiotracer, 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)FDG), could be used as an alternative light source for photoactivation. PROCEDURES: We utilized (18)FDG, which is a metabolic activity-based PET probe, as a source of light to photoactivate caged luciferin in a breast cancer animal model expressing luciferase. RESULTS: Bioluminescence produced from luciferin allowed for the real-time monitoring of Cherenkov radiation-promoted uncaging of the substrate. CONCLUSION: The proposed method may provide a very important option for in vivo photoactivation, in particular for activation of photosensitizers for photodynamic therapy and eventually for combining radioisotope therapy and photodynamic therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21538154
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10517
      1. Author :
        Sehrawat, A.; Arlotti, J. A.; Murakami, A.; Singh, S. V.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Breast Cancer Res Treat
      6. Products :
      7. Volume :
        136
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-D3H1, MDA-MB-231-luc-D3H1, IVIS, Bioware, Breast Cancer
      12. Abstract :
        The present study was undertaken to determine the anticancer efficacy of zerumbone (ZER), a sesquiterpene from subtropical ginger, against human breast cancer cells in vitro and in vivo. ZER treatment caused a dose-dependent decrease in viability of MCF-7 and MDA-MB-231 human breast cancer cells in association with G(2)/M phase cell cycle arrest and apoptosis induction. ZER-mediated cell cycle arrest was associated with downregulation of cyclin B1, cyclin-dependent kinase 1, Cdc25C, and Cdc25B. Even though ZER treatment caused stabilization of p53 and induction of PUMA, these proteins were dispensable for ZER-induced cell cycle arrest and/or apoptosis. Exposure of MDA-MB-231 and MCF-7 cells to ZER resulted in downregulation of Bcl-2 but its ectopic expression failed to confer protection against ZER-induced apoptosis. On the other hand, the SV40 immortalized mouse embryonic fibroblasts derived from Bax and Bak double knockout mice were significantly more resistant to ZER-induced apoptosis. ZER-treated MDA-MB-231 and MCF-7 cells exhibited a robust activation of both Bax and Bak. In vivo growth of orthotopic MDA-MB-231 xenografts was significantly retarded by ZER administration in association with apoptosis induction and suppression of cell proliferation (Ki-67 expression). These results indicate that ZER causes G(2)/M phase cell cycle arrest and Bax/Bak-mediated apoptosis in human breast cancer cells, and retards growth of MDA-MB-231 xenografts in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23053663
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10518
      1. Author :
        Baoum, A.; Ovcharenko, D.; Berkland, C.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Int J Pharm
      6. Products :
      7. Volume :
        427
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        A549-luc-C8, A549-luc, IVIS, Bioware, Calcium/chemistry; Cell Line; Cell-Penetrating Peptides/administration & dosage/*chemistry; Drug Carriers/administration & dosage/adverse effects/*chemistry; *Gene Silencing; Genetic Therapy/*methods; Humans; Luciferases; Nanoparticles/administration & dosage/chemistry; RNA, Small Interfering/*administration & dosage/chemistry; Tissue Distribution
      12. Abstract :
        The development of short-interfering RNA (siRNA) offers new strategies for manipulating specific genes responsible for pathological disorders. Myriad cationic polymer and lipid formulations have been explored, but an effective, non-toxic carrier remains a major barrier to clinical translation. Among the emerging candidates for siRNA carriers are cell penetrating peptides (CPPs), which can traverse the plasma membrane and facilitate the intracellular delivery of siRNA. Previously, a highly efficient and non-cytotoxic means of gene delivery was designed by complexing plasmid DNA with CPPs, then condensing with calcium. Here, the CPP TAT and a longer, 'double' TAT (dTAT) were investigated as potential carriers for siRNA. Various N/P ratios and calcium concentrations were used to optimize siRNA complexes in vitro. Upon addition of calcium, 'loose' siRNA/CPP complexes were condensed into small nanoparticles. Knockdown of luciferase expression in the human epithelial lung cell line A549-luc-C8 was high (up to 93%) with no evidence of cytotoxicity. Selected formulations of the dTAT complexes were dosed intravenously up to 1000 mg/kg with minimal toxicity. Biodistribution studies revealed high levels of gene knockdown in the lung and muscle tissue suggesting these simple vectors may offer a translatable approach to siRNA delivery.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21856394
      14. Call Number :
        PKI @ kd.modi @ 9
      15. Serial :
        10519
      1. Author :
        Cerchia, L.; Esposito, C. L.; Camorani, S.; Rienzo, A.; Stasio, L.; Insabato, L.; Affuso, A.; de Franciscis, V.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Mol Ther
      6. Products :
      7. Volume :
        20
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        A549-luc-C8, A549-luc, IVIS, Bioware
      12. Abstract :
        Axl is a tyrosine kinase receptor that was first identified as a transforming gene in human myeloid leukemia. Recent converging evidence suggests its implication in cancer progression and invasion for several solid tumors, including lung, breast, brain, thyroid, and pancreas. In the last decade, Axl has thus become an attractive target for therapeutic development of more aggressive cancers. An emerging class of therapeutic inhibitors is now represented by short nucleic acid aptamers. These molecules act as high affinity ligands with several advantages over conventional antibodies for their use in vivo, including their small size and negligible immunogenicity. Furthermore, these molecules can easily form conjugates able to drive the specific delivery of interfering RNAs, nanoparticles, or chemotherapeutics. We have thus generated and characterized a selective RNA-based aptamer, GL21.T that binds the extracellular domain of Axl at high affinity (12 nmol/l) and inhibits its catalytic activity. GL21.T blocked Axl-dependent transducing events in vitro, including Erk and Akt phosphorylation, cell migration and invasion, as well as in vivo lung tumor formation in mice xenografts. In this respect, the GL21.T aptamer represents a promising therapeutic molecule for Axl-dependent cancers whose importance is highlighted by the paucity of available Axl-specific inhibitory molecules.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22910292
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10520
      1. Author :
        Cheng, H. H.; Kuo, C. C.; Yan, J. L.; Chen, H. L.; Lin, W. C.; Wang, K. H.; Tsai, K. K.; Guven, H.; Flaberg, E.; Szekely, L.; Klein, G.; Wu, K. K.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Proc Natl Acad Sci U S A
      6. Products :
      7. Volume :
        109
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        A549-luc-C8, A549-luc, IVIS, Bioware, Acetylserotonin O-Methyltransferase/metabolism; Animals; Biocatalysis/drug effects; Cell Line, Tumor; Cell Movement/drug effects; Cell Proliferation/drug effects; Cell Transformation, Neoplastic/drug effects/*pathology; Cyclooxygenase 2/*metabolism; Cyclooxygenase 2 Inhibitors/pharmacology; Fibroblasts/drug effects/metabolism; Humans; Metabolic Networks and Pathways/drug effects; Metabolomics; Mice; Neoplasm Metastasis; Solubility/drug effects; Subcellular Fractions/drug effects/metabolism; Tryptophan/*analogs & derivatives/biosynthesis/metabolism/pharmacology; Tryptophan Hydroxylase/metabolism; Xenograft Model Antitumor Assays
      12. Abstract :
        Cyclooxygenase-2 (COX-2) expression is induced by mitogenic and proinflammatory factors. Its overexpression plays a causal role in inflammation and tumorigenesis. COX-2 expression is tightly regulated, but the mechanisms are largely unclear. Here we show the control of COX-2 expression by an endogenous tryptophan metabolite, 5-methoxytryptophan (5-MTP). By using comparative metabolomic analysis and enzyme-immunoassay, our results reveal that normal fibroblasts produce and release 5-MTP into the extracellular milieu whereas A549 and other cancer cells were defective in 5-MTP production. 5-MTP was synthesized from L-tryptophan via tryptophan hydroxylase-1 and hydroxyindole O-methyltransferase. 5-MTP blocked cancer cell COX-2 overexpression and suppressed A549 migration and invasion. Furthermore, i.p. infusion of 5-MTP reduced tumor growth and cancer metastasis in a murine xenograft tumor model. We conclude that 5-MTP synthesis represents a mechanism for endogenous control of COX-2 overexpression and is a valuable lead for new anti-cancer and anti-inflammatory drug development.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22851770
      14. Call Number :
        PKI @ kd.modi @ 4
      15. Serial :
        10521
Back to Search
Select All  |  Deselect All