1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

31–40 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Angiogenesis
      6. Products :
      7. Volume :
        13
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        angiogenesis imaging; in vivo imaging; Angiogenesis; Bioluminescence; Fluorescence; Molecular imaging; Optical imaging
      12. Abstract :
        In recent years, molecular imaging gained significant importance in biomedical research. Optical imaging developed into a modality which enables the visualization and quantification of all kinds of cellular processes and cancerous cell growth in small animals. Novel gene reporter mice and cell lines and the development of targeted and cleavable fluorescent “smart” probes form a powerful imaging toolbox. The development of systems collecting tomographic bioluminescence and fluorescence data enabled even more spatial accuracy and more quantitative measurements. Here we describe various bioluminescent and fluorescent gene reporter models and probes that can be used to specifically image and quantify neovascularization or the angiogenic process itself.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911541/
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4488
      1. Author :
        Laurie E. Littlepage; Mark D. Sternlicht; Nathalie Rougier; Joanna Phillips; Eugenio Gallo; Ying Yu; Kurt Williams; Audrey Brenot; Jeffrey I. Gordon; Zena Werb
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer Research
      6. Products :
      7. Volume :
        70
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        matrix metalloproteinase; neuroendocrine; prostate cancer; metatasis
      12. Abstract :
        Prostate cancer is the leading form of cancer in men. Prostate tumors often contain neuroendocrine differentiation, which correlates with androgen-independent progression and poor prognosis. Matrix metalloproteinases (MMP), a family of enzymes that remodel the microenvironment, are associated with tumorigenesis and metastasis. To evaluate MMPs during metastatic prostatic neuroendocrine cancer development, we used transgenic mice expressing SV40 large T antigen in their prostatic neuroendocrine cells, under the control of transcriptional regulatory elements from the mouse cryptdin-2 gene (CR2-TAg). These mice have a stereotypical pattern of tumorigenesis and metastasis. MMP-2, MMP-7, and MMP-9 activities increased concurrently with the transition to invasive metastatic carcinoma, but they were expressed in different prostatic cell types: stromal, luminal epithelium, and macrophages, respectively. CR2-TAg mice treated with AG3340/Prinomastat, an MMP inhibitor that blocks activity of MMP-2, MMP-9, MMP-13, and MMP-14, had reduced tumor burden. CR2-TAg animals were crossed to mice homozygous for null alleles of MMP-2, MMP-7, or MMP-9 genes. At 24 weeks CR2-TAg; MMP-2-/- mice showed reduced tumor burden, prolonged survival, decreased lung metastasis, and decreased blood vessel density, whereas deficiencies in MMP-7 or MMP-9 did not influence tumor growth or survival. Mice deficient for MMP-7 had reduced endothelial area coverage and decreased vessel size, and mice lacking MMP-9 had increased numbers of invasive foci and increased perivascular invasion, as well as decreased tumor blood vessel size. Together, these results suggest distinct contributions by MMPs to the progression of aggressive prostate tumor and to helping tumors cleverly find alternative routes to malignant progression.
      13. URL :
        http://cancerres.aacrjournals.org/content/70/6/2224.abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4490
      1. Author :
        E.A. te Velde; Th. Veerman; V. Subramaniam; Th. Ruers
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        European Journal of Cancer Surgery
      6. Products :
      7. Volume :
        36
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Fluorescent; Sentinel node; Probe; Resection; Oncology; Surgery
      12. Abstract :
        Aims and background: Improved visualization of surgical targets inside of the patient helps to improve radical resection of the tumor while sparing healthy surrounding tissue. In order to achieve an image, optical contrast must be generated by properties intrinsic to the tissue, or require the attachment of special visualization labels to the tumor. In this overview the current status of the clinical use of fluorescent dyes and probes are reviewed.

        Methods: In this review, all experimental and clinical studies concerning fluorescent imaging were included. In addition, in the search for the optimal fluorescent imaging modality, all characteristics of a fluorescent dye were described.

        Findings and conclusions: Although the technique of imaging through fluorescence sounds promising and several animal models show efficacy, official approval of these agents for further clinical evaluation, is eagerly awaited.
      13. URL :
        http://www.ejso.com/article/S0748-7983%2809%2900498-3/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4491
      1. Author :
        M van Eekelen; LS Sasportas; R Kasmieh; S Yip; J-L Figueiredo; DN Louis; R Weissleder; K Shah
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Oncogene
      6. Products :
      7. Volume :
        29
      8. Issue :
        22
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        brain tumor; glioma; human neural stem cells; TSP-1; endothelial cells; angiogenesis; in vivo imaging
      12. Abstract :
        Novel therapeutic agents combined with innovative modes of delivery and non-invasive imaging of drug delivery, pharmacokinetics and efficacy are crucial in developing effective clinical anticancer therapies. In this study, we have created and characterized multiple novel variants of anti-angiogenic protein thrombospondin (aaTSP-1) that comprises unique regions of three type-I-repeats of TSP-1 and used engineered human neural stem cells (hNSC) to provide sustained on-site delivery of secretable aaTSP-1 to tumor-vasculature. We show that hNSC-aaTSP-1 has anti-angiogenic effect on human brain and dermal microvascular endothelial cells co-cultured with established glioma cells and CD133+ glioma-initiating cells. Using human glioma cells and hNSC engineered with different combinations of fluorescent and bioluminescent marker proteins and employing multi-modality imaging techniques, we show that aaTSP-1 targets the vascular-component of gliomas and a single administration of hNSC-aaTSP-1 markedly reduces tumor vessel-density that results in inhibition of tumor-progression and increased survival in mice bearing highly malignant human gliomas. We also show that therapeutic hNSC do not proliferate and remain in an un-differentiated state in the brains of glioma-bearing mice. This study provides a platform for accelerated development of future cell-based therapies for cancer.
      13. URL :
        http://www.nature.com/onc/journal/v29/n22/abs/onc201075a.html
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4492
      1. Author :
        Qingbei Zhang; Meng Yang; Jikun Shen; Lynnette M. Geerhold; Robert M Hoffman; H. Rosie Xing
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        International Journal of Cancer
      6. Products :
      7. Volume :
        126
      8. Issue :
        11
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        metastasis; hemotogenous spread; prostate cancer; GFP; in vivo imaging
      12. Abstract :
        Metastasis is primarily responsible for the morbidity and mortality of cancer. Improved therapeutic outcomes and prognosis depend on improved understanding of mechanisms regulating the establishment of early metastasis. In this study, use of green fluorescent protein (GFP)-expressing PC-3 orthotopic model of human prostate cancer and two complementary fluorescence in vivo imaging systems (Olympus OV100 and VisEn FMT) allowed for the first time real-time characterization of cancer cell-endothelium interactions during spontaneous metastatic colonization of the liver and lung in live mice. We observed that prior to the detection of extra-vascular metastases, GFP-expressing PC-3 cancer cells resided initially inside the blood vessels of the liver and the lung, where they proliferated and expressed Ki-67 and exhibited matrix metalloprotenases (MMP) activity. Thus, the intravascular cancer cells produced their own microenvironment, where they could continue to proliferate. Extravasation occurred earlier in the lung than in the liver. Our results demonstrate that the intravascular microenvironment is a critical staging area for the development of metastasis that later can invade the parenchyma. Intravascular tumor cells may represent a therapeutic target to inhibit the development of extravascular metastases. Therefore, this imageable model of intravascular metastasis may be used for evaluation of novel anti-metastatic agents.
      13. URL :
        http://onlinelibrary.wiley.com/doi/10.1002/ijc.24979/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4493
      1. Author :
        John Baeten; Jodi Haller; Helen Shih; Vasilis Ntziachristos
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Neoplasia
      6. Products :
      7. Volume :
        11
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        in vivo imaging; optical imaging; breast cancer; molecular imaging
      12. Abstract :
        Optical imaging of breast cancer has been considered for detecting functional and molecular characteristics of diseases in clinical and preclinical settings. Applied to laboratory research, photonic investigations offer a highly versatile tool for preclinical imaging and drug discovery. A particular advantage of the optical method is the availability of multiple spectral bands for performing imaging. Herein, we capitalize on this feature to demonstrate how it is possible to use different wavelengths to offer internal controls and significantly improve the observation accuracy in molecular imaging applications. In particular, we show the independent in vivo detection of cysteine proteases along with tumor permeability and interstitial volume measurements using a dual-wavelength approach. To generate results with a view toward clinically geared studies, a transgenic Her2/neu mouse model that spontaneously developed mammary tumors was used. In vivo findings were validated against conventional ex vivo tests such as histology and Western blot analyses. By correcting for biodistribution parameters, the dual-wavelength method increases the accuracy of molecular observations by separating true molecular target from probe biodistribution. As such, the method is highly appropriate for molecular imaging studies where often probe delivery and target presence are not independently assessed. On the basis of these findings, we propose the dual-wavelength/normalization approach as an essential method for drug discovery and preclinical imaging studies.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2647724/
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4494
      1. Author :
        Aki Hanyu; Kiyotsugu Kojima; Kiyohiko Hatake; Kimie Nomura; Hironori Murayama; Yuichi Ishikawa; Satoshi Miyata; Masaru Ushijima; Masaaki Matsuura; Etsuro Ogata; Keiji Miyazawa;Takeshi Imamura
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Cancer Science
      6. Products :
      7. Volume :
        100
      8. Issue :
        11
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Angiogenesis; metastasis; in vivo imaging; fluorescence imaging
      12. Abstract :
        Angiogenesis plays a crucial role in cancer progression and metastasis. Thus, blocking tumor angiogenesis is potentially a universal approach to prevent tumor establishment and metastasis. In this study, we used in vivo and ex vivo fluorescence imaging to show that an antihuman vascular endothelial growth factor (VEGF) antibody represses angiogenesis and the growth of primary tumors of human fibrosarcoma HT1080 cells in implanted nude mice. Interestingly, administering the antihuman VEGF antibody reduced the development of new blood vessels and normalized pre-existing tumor vasculature in HT1080 cell tumors. In addition, antihuman VEGF antibody treatment decreased lung metastasis from the primary tumor, whereas it failed to block lung metastasis in a lung colonization experiment in which tumor cells were injected into the tail vein. These results suggest that VEGF produced by primary HT1080 cell tumors has a crucial effect on lung metastasis. The present study indicates that the in vivo fluorescent microscopy system will be useful to investigate the biology of angiogenesis and test the effectiveness of angiogenesis inhibitors.
      13. URL :
        http://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.2009.01305.x/full
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4495
      1. Author :
        Rahul Anil Sheth; Rabi Upadhyay; Lars Stangenberg; Rucha Sheth; Ralph Weissleder; Umar Mahmood
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Gynecologic Oncology
      6. Products :
      7. Volume :
        112
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Ovarian cancer; Molecular imaging; Intraoperative imaging; Fluorescence imaging
      12. Abstract :
        OBJECTIVES: Cytoreductive surgery is a cornerstone of therapy in metastatic ovarian cancer. While conventional white light (WL) inspection detects many obvious tumor foci, careful histologic comparison has shown considerable miss rates for smaller foci. The goal of this study was to compare tumor detection using WL versus near infrared (NIR) imaging with a protease activatable probe, as well as to evaluate the ability to quantify NIR fluorescence using a novel quantitative optical imaging system.

        METHODS: A murine model for peritoneal carcinomatosis was generated and metastatic foci were imaged using WL and NIR imaging following the i.v. administration of the protease activatable probe ProSense750. The presence of tumor was confirmed by histology. Additionally, the ability to account for variations in fluorescence signal intensity due to changes in distance between the catheter and target lesion during laparoscopic procedures was evaluated.

        RESULTS: NIR imaging with a ProSense750 significantly improved upon the target-to-background ratios (TBRs) of tumor foci in comparison to WL imaging (minimum improvement was approximately 3.5 fold). Based on 52 histologically validated samples, the sensitivity for WL imaging was 69%, while the sensitivity for NIR imaging was 100%. The effects of intraoperative distance changes upon fluorescence intensity were corrected in realtime, resulting in a decrease from 89% to 5% in signal variance during fluorescence laparoscopy.

        CONCLUSIONS: With its molecular specificity, low background autofluorescence, high TBRs, and quantitative signal, optical imaging with NIR protease activatable probes greatly improves upon the intraoperative detection of ovarian cancer metastases.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19135233?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4497
Back to Search
Select All  |  Deselect All