1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

201–210 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Kadurugamuwa, J. L.; Francis, K. P.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Methods in Molecular Biology
      6. Products :
      7. Volume :
        431
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware, Xen29, Animals, Bacteria/chemistry/ genetics, Bacterial Infections/diagnosis/ microbiology, Biofilms/ growth & development, Diagnostic Imaging/methods, Luminescent Measurements/ methods IVIS, Xenogen, Xen5, Xen44
      12. Abstract :
        Whole body biophotonic imaging (BPI) is a technique that has contributed significantly to the way researchers study bacterial pathogens and develop pre-clinical treatments to combat their ensuing infections in vivo. Not only does this approach allow disease profiles and drug efficacy studies to be conducted non-destructively in live animals over the entire course of the disease, but in many cases, it enables investigators to observe disease profiles that could otherwise easily be missed using conventional methodologies. The principles of this technique are that bacterial pathogens engineered to express bioluminescence (visible light) can be readily monitored from outside of the living animal using specialized low-light imaging equipment, enabling their movement, expansion and treatment to be seen completely non-invasively. Moreover, because the same group of animals can be imaged at each time-point throughout the study, the overall number of animals used is dramatically reduced, saving lives, time, and money. Also, as each animal acts as its own control over time, the issues associated with animal-to-animal variation are circumvented, thus improving the quality of the biostatistical data generated. The ability to monitor infections in vivo in a longitudinal fashion is especially appealing to assess chronic infections such as those involving implanted devices. Typically, bacteria grow as biofilms on these foreign bodies and are reputably difficult to monitor with conventional methods. Because of the non-destructive and non-invasive nature of BPI, the procedure can be performed repeatedly in the same animal, allowing the biofilm to be studied in situ without detachment or disturbance. This ability not only allows unique patterns of disease relapse to be seen following termination of antibiotic therapy but also in vivo resistance development during prolonged treatment, both of which are common occurrences with device-related infections. This chapter describes the bioluminescent engineering of both Gram-positive and Gram-negative bacteria and overviews their use in device-associated infections in several anatomical sites in a variety of animal models.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18287760
      14. Call Number :
        139321
      15. Serial :
        5568
      1. Author :
        Woelfle, Mark A; Xu, Yao; Qin, Ximing; Johnson, Carl Hirschie
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Proceedings of the National Academy of Sciences of the United States of America
      6. Products :
      7. Volume :
        104
      8. Issue :
        47
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; Circadian Rhythm; Cyanobacteria; DNA, Bacterial; DNA, Superhelical; Gene Expression Regulation, Bacterial; Light; Plasmids; Promoter Regions, Genetic; pXen-13; Transcription, Genetic
      12. Abstract :
        The cyanobacterium Synechococcus elongatus expresses robust circadian (daily) rhythms under the control of the KaiABC-based core clockwork. Unlike eukaryotic circadian systems characterized thus far, the cyanobacterial clockwork modulates gene expression patterns globally and specific clock gene promoters are not necessary in mediating the circadian feedback loop. The oscilloid model postulates that global rhythms of transcription are based on rhythmic changes in the status of the cyanobacterial chromosome that are ultimately controlled by the KaiABC oscillator. By using a nonessential, cryptic plasmid (pANS) as a reporter of the superhelical state of DNA in cyanobacteria, we show that the supercoiling status of this plasmid changes in a circadian manner in vivo. The rhythm of topological change in the plasmid is conditional; this change is rhythmic in constant light and in light/dark cycles, but not in constant darkness. In further support of the oscilloid model, cyanobacterial promoters that are removed from their native chromosomal locations and placed on a plasmid preserve their circadian expression patterns.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18000054
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9031
      1. Author :
        Singh, Abhinav; Massoud, Tarik F; Deroose, Christophe; Gambhir, Sanjiv S
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Seminars in nuclear medicine
      6. Products :
      7. Volume :
        38
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; Diagnostic Imaging; Genes, Reporter; Humans; Male; Molecular Probe Techniques; Neoplasm Proteins; PC-3M-luc; Prostatic Neoplasms; Tumor Markers, Biological
      12. Abstract :
        Prostate cancer remains an important and growing health problem. Advances in imaging of prostate cancer may help to achieve earlier and more accurate diagnosis and treatment. We review the various strategies using reporter genes for molecular imaging of prostate cancer. These approaches are emerging as valuable tools for monitoring gene expression in laboratory animals and humans. Further development of more sensitive and selective reporters, combined with improvements in detection technology, will consolidate the position of reporter gene imaging as a versatile method for understanding of intracellular biological processes and the underlying molecular basis of prostate cancer, as well as potentially establishing a future role in the clinical management of patients afflicted with this disease.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18096460
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8966
      1. Author :
        Okuda, Tomoyuki; Kawaguchi, Yasuhisa; Okamoto, Hirokazu
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Current topics in medicinal chemistry
      6. Products :
      7. Volume :
        9
      8. Issue :
        12
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; Gene Silencing; PC-3M-luc; Peptides; Proteins; RNA Interference; Transfection
      12. Abstract :
        RNA interference (RNAi) is an attractive phenomenon for practical use that specifically inhibits gene expression and is carried out by small double-stranded RNAs (dsRNAs) including small interfering RNA (siRNA) or short hairpin RNA (shRNA). In addition, RNAi is of great interest for clinical use to cure refractory diseases related to the expression of a specific gene. To achieve gene silencing in the body, a sufficient amount of dsRNA must be delivered and internalized into target cells. However, dsRNAs have a large molecular weight and net negative charge, which limits their membrane-permeating ability. Moreover, dsRNAs are rapidly degraded by endonucleses in the body. Therefore, for the efficient delivery of dsRNAs, many approaches based on drug delivery systems have been carried out. In this review, we focus on recent reports about the application of functional peptides and proteins designed for the efficient delivery of dsRNAs.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19860710
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8962
      1. Author :
        Engelsman, A. F.; Mei, H. C. van der; Francis, K. P.; Busscher, H. J.; Ploeg, R. J.; Dam, G. M. van
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        J Biomed Mater Res B Appl Biomater
      6. Products :
      7. Volume :
        88
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; IVIS, Xenogen; Xen29
      12. Abstract :
        Infection is the main cause of biomaterials-related failure. A simple technique to test in-vivo new antimicrobial and/or nonadhesive implant coatings is unavailable. Current in vitro methods for studying bacterial adhesion and growth on biomaterial surfaces lack the influence of the host immune system. Most in vivo methods to study biomaterials-related infections routinely involve implant-removal, preventing comprehensive longitudinal monitoring. In vivo imaging circumvents these drawbacks and is based on the use of noninvasive optical imaging of bioluminescent bacteria. Staphylococcus aureus Xen29 is genetically modified to be stably bioluminescent, by the introduction of a modified full lux operon onto its chromosome. Surgical meshes with adhering S. aureus Xen29 were implanted in mice and bacterial growth and spread into the surrounding tissue was monitored longitudinally from bioluminescence with a highly sensitive CCD camera. Distinct spatiotemporal bioluminescence patterns, extending beyond the mesh area into surrounding tissues were observed. After 10 days, the number of living organisms isolated from explanted meshes was found to correlate with bioluminescence prior to sacrifice of the animals. Therefore, it is concluded that in vivo imaging using bioluminescent bacteria is ideally suited to study antimicrobial coatings taking into account the host immune system. In addition, longitudinal monitoring of infection in one animal will significantly reduce the number of experiments and animals.
      13. URL :
        http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18618733
      14. Call Number :
        137698
      15. Serial :
        7462
      1. Author :
        Neben, Tamlyn Yee; Clermont, Anne O.; Esposito, Lin; Oei, Yoko; Neben, Tamlyn Yee; Jenkins, Darlene E.; Clermont, Anne O.; Esposito, Lin; Oei, Yoko; Jenkins, Darlene E.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        AACR Meeting Abstracts
      6. Products :
      7. Volume :
        2005
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; Lovo-6-luc-1 cells
      12. Abstract :
        Colorectal cancer is the fourth most common cancer in the United States with an estimated 130,000 new cases diagnosed each year. Many cases are asymptomatic and not diagnosed until late stage of disease. Identification of primary tumors at an earlier stage is advantageous in treatment planning and aids in decreasing the morbidity/mortality rate from recurrence. The aim of our studies is to establish a xenograft system for monitoring tumor growth and metastasis in vivo which allows continual evaluation of drug and drug regimen efficacy at all stages of tumor progression. LoVo-6-luc-1, a luciferase expressing cell line derived from LoVo human colorectal adenocarcinoma cells, was injected by various routes (subcutaneous, intraperitoneal and intracecal) into female SCID-bg mice. Tumor growth and metastatic spread was monitored weekly by in vivo imaging using the Xenogen IVISTM imaging platform. Visible bioluminescence signals were detected immediately after injection and high tumor take was seen in all of the models. In the subcutaneous model, we found a high correlation between mean bioluminescence and mean tumor volume. In the intraperitoneal and ceacum injected models, the onset of tumor spread was rapid and ex vivo imaging confirmed metastasis to multiple organs such as liver, lung, kidney, adrenal gland, spleen and ovary.
      13. URL :
        http://www.aacrmeetingabstracts.org/cgi/content/abstract/2005/1/908-d
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9016
      1. Author :
        Jenkins, Darlene E.; Hornig, Yvette S.; Oei, Yoko A.; Yu, Shang-Fan; Dusich, Joan M.; Jenkins, Darlene E.; Purchio, Tony; Hornig, Yvette S.; Oei, Yoko A.; Yu, Shang-Fan; Dusich, Joan M.; Purchio, Tony
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2004
      5. Publication :
        AACR Meeting Abstracts
      6. Products :
      7. Volume :
        2004
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; MCF-7-luc-F5 cells
      12. Abstract :
        A clonal human tumor cell line expressing firefly luciferase, MCF-7-luc-F5, was developed from parental MCF-7 breast carcinoma cells and characterized for bioluminescence in vitro and in vivo. As few as twenty cells were detectable in vitro and average bioluminescence measured approximately 680 photons/sec/cell. Tumorigenesis of MCF-7-luc-F5 cells was assessed with and without estrogen supplement in vivo following injection of cells into the mammary fat pad of nude-beige mice. Continuous tumor growth was observed by weekly bioluminescent imaging in mice receiving a slow release (60 day) estrogen pellet implant (0.36 mg/pellet), while no tumor growth occurred in mice without estrogen supplement. Caliper measurements of tumor volume indicated similar results. A kinetic analysis of luciferase activity in vivo demonstrated that peak signals were evident approximately 12-15 minutes after injection of luciferin substrate and were maintained at a relatively stable level for at least another 20-25 minutes. Spontaneous metastasis from the primary mammary fat pad tumor to thoracic and axillary regions was observed in vivo in 50% of the animals. Subsequent ex vivo images and histology identified metastatic sites in lung, rib, or lymph nodes depending on the mouse. Standard drug treatment on primary and secondary tumor growth was also monitored by bioluminescent imaging.
      13. URL :
        http://www.aacrmeetingabstracts.org/cgi/content/abstract/2004/1/1179-c
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9011
Back to Search
Select All  |  Deselect All