1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

101–110 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        PLoS pathogens
      6. Products :
      7. Volume :
        3
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anthrax; Bacillus anthracis; Bioware; Disease Models, Animal; Gastrointestinal Diseases; Inhalation Exposure; Luciferases; Luminescence; Luminescent Measurements; Lymph Nodes; Mice; Mice, Inbred BALB C; Nasal Cavity; Organisms, Genetically Modified; Peyer's Patches; Pharynx; pXen-5; Skin; Spores, Bacterial
      12. Abstract :
        Bacillus anthracis causes three forms of anthrax: inhalational, gastrointestinal, and cutaneous. Anthrax is characterized by both toxemia, which is caused by secretion of immunomodulating toxins (lethal toxin and edema toxin), and septicemia, which is associated with bacterial encapsulation. Here we report that, contrary to the current view of B. anthracis pathogenesis, B. anthracis spores germinate and establish infections at the initial site of inoculation in both inhalational and cutaneous infections without needing to be transported to draining lymph nodes, and that inhaled spores establish initial infection in nasal-associated lymphoid tissues. Furthermore, we found that Peyer's patches in the mouse intestine are the primary site of bacterial growth after intragastric inoculation, thus establishing an animal model of gastrointestinal anthrax. All routes of infection progressed to the draining lymph nodes, spleen, lungs, and ultimately the blood. These discoveries were made possible through the development of a novel dynamic mouse model of B. anthracis infection using bioluminescent non-toxinogenic capsulated bacteria that can be visualized within the mouse in real-time, and demonstrate the value of in vivo imaging in the analysis of B. anthracis infection. Our data imply that previously unrecognized portals of bacterial entry demand more intensive investigation, and will significantly transform the current perception of inhalational, gastrointestinal, and cutaneous B. anthracis pathogenesis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17542645
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9022
      1. Author :
        Bucki, Robert; Leszczynska, Katarzyna; Byfield, Fitzroy J; Fein, David E; Won, Esther; Cruz, Katrina; Namiot, Andrzej; Kulakowska, Alina; Namiot, Zbigniew; Savage, Paul B; Diamond, Scott L; Janmey, Paul A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Antimicrobial agents and chemotherapy
      6. Products :
      7. Volume :
        54
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Anti-Inflammatory Agents; Bacterial Infections; Biofilms; Cathelicidins; Cattle; Cells, Cultured; Dexamethasone; Drug Design; Humans; Interleukins; Macrophages; Microbial Sensitivity Tests; Neutrophils; Phagocytosis; Pseudomonas aeruginosa; Receptors, Glucocorticoid; Spermine; Staphylococcus aureus; Xen5
      12. Abstract :
        The rising number of antibiotic-resistant bacterial strains represents an emerging health problem that has motivated efforts to develop new antibacterial agents. Endogenous cationic antibacterial peptides (CAPs) that are produced in tissues exposed to the external environment are one model for the design of novel antibacterial compounds. Here, we report evidence that disubstituted dexamethasone-spermine (D2S), a cationic corticosteroid derivative initially identified as a by-product of synthesis of dexamethasone-spermine (DS) for the purpose of improving cellular gene delivery, functions as an antibacterial peptide-mimicking molecule. This moiety exhibits bacterial killing activity against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa present in cystic fibrosis (CF) sputa, and Pseudomonas aeruginosa biofilm. Although compromised in the presence of plasma, D2S antibacterial activity resists the proteolytic activity of pepsin and is maintained in ascites, cerebrospinal fluid, saliva, and bronchoalveolar lavage (BAL) fluid. D2S also enhances S. aureus susceptibility to antibiotics, such as amoxicillin (AMC), tetracycline (T), and amikacin (AN). Inhibition of interleukin-6 (IL-6) and IL-8 release from lipopolysaccharide (LPS)- or lipoteichoic acid (LTA)-treated neutrophils in the presence of D2S suggests that this molecule might also prevent systemic inflammation caused by bacterial wall products. D2S-mediated translocation of green fluorescent protein (GFP)-labeled glucocorticoid receptor (GR) in bovine aorta endothelial cells (BAECs) suggests that some of its anti-inflammatory activities involve engagement of glucocorticoid receptors. The combined antibacterial and anti-inflammatory activities of D2S suggest its potential as an alternative to natural CAPs in the prevention and treatment of some bacterial infections.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20308375
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9996
      1. Author :
        Ghali, Shadi; Bhatt, Kirit A; Dempsey, Marlese P; Jones, Deidre M; Singh, Sunil; Aarabi, Shahram; Arabi, Shahram; Butler, Peter E; Gallo, Robert L; Gurtner, Geoffrey C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Plastic and reconstructive surgery
      6. Products :
      7. Volume :
        123
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Bioware; Cathelicidins; Chronic Disease; Drug Carriers; Genetic Engineering; Male; Rats; Rats, Inbred F344; Surgical Flaps; Wound Infection; Xen29
      12. Abstract :
        BACKGROUND The success of antimicrobial therapy has been impaired by the emergence of resistant bacterial strains. Antimicrobial peptides are ubiquitous proteins that are part of the innate immune system and are successful against such antibiotic-resistant microorganisms. The authors have previously demonstrated the feasibility of protein delivery via microvascular free flap gene therapy and here they examine this approach for recalcitrant infections. METHODS The authors investigated the production of the human cathelicidin antimicrobial peptide-LL37, delivered by ex vivo transduction of the rodent superficial inferior epigastric free flap with Ad/CMV-LL37. The vascular permeabilizing agent vascular endothelial growth factor (VEGF) was co-administered during ex vivo transduction with adenoviral vectors in an attempt to augment transduction efficiency. A rodent model of chronic wound/foreign body infection seeded with bioluminescent Staphylococcus aureus was used to assess the biological efficacy of delivering therapeutic antimicrobial genes using this technology. RESULTS The authors were successful in demonstrating significant LL37 expression, which persisted for 14 days after ex vivo transduction with Ad/CMV-LL37. Transduction efficiency was significantly improved with the co-administration of 5 micrograms of VEGF during transduction without significantly increasing systemic dissemination of adenovirus or systemic toxicity. They were able to demonstrate in the rodent model of chronic wound/foreign body infections a significant reduction in bacterial loads from infected catheters following transduction with Ad/CMV-LL37 and increased bacterial clearance. CONCLUSION This study demonstrates for the first time that microbicidal gene therapy via microvascular free flaps is able to clear chronic infections such as occurs with osteomyelitis resulting from trauma or an infected foreign body [corrected]
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19337084
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9040
      1. Author :
        Balibar, Carl J; Shen, Xiaoyu; McGuire, Dorothy; Yu, Donghui; McKenney, David; Tao, Jianshi
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Microbiology (Reading, England)
      6. Products :
      7. Volume :
        156
      8. Issue :
        Pt 5
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Bacterial Proteins; Bacteriolysis; Bioware; Cell Wall; Gene Expression Profiling; Gene Knockout Techniques; Genes, Reporter; Lysostaphin; Mice; Microbial Sensitivity Tests; Sepsis; Staphylococcus aureus; Virulence; Xen29
      12. Abstract :
        Transcriptional profiling data accumulated in recent years for the clinically relevant pathogen Staphylococcus aureus have established a cell wall stress stimulon, which comprises a coordinately regulated set of genes that are upregulated in response to blockage of cell wall biogenesis. In particular, the expression of cwrA (SA2343, N315 notation), which encodes a putative 63 amino acid polypeptide of unknown biological function, increases over 100-fold in response to cell wall inhibition. Herein, we seek to understand the biological role that this gene plays in S. aureus. cwrA was found to be robustly induced by all cell wall-targeting antibiotics tested – vancomycin, oxacillin, penicillin G, phosphomycin, imipenem, hymeglusin and bacitracin – but not by antibiotics with other mechanisms of action, including ciprofloxacin, erythromycin, chloramphenicol, triclosan, rifampicin, novobiocin and carbonyl cyanide 3-chlorophenylhydrazone. Although a DeltacwrA S. aureus strain had no appreciable shift in MICs for cell wall-targeting antibiotics, the knockout was shown to have reduced cell wall integrity in a variety of other assays. Additionally, the gene was shown to be important for virulence in a mouse sepsis model of infection.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20167623
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9037
      1. Author :
        Yu, Jun; Wu, Jenny; Francis, Kevin P; Purchio, Tony F; Kadurugamuwa, Jagath L
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        The Journal of antimicrobial chemotherapy
      6. Products :
      7. Volume :
        55
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Biofilms; Bioware; Drug Resistance, Bacterial; Mice; Mutation; Rifampin; Staphylococcus aureus; Xen29
      12. Abstract :
        OBJECTIVES To investigate in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm model using bioluminescence imaging. MATERIALS AND METHODS S. aureus was engineered with a luciferase operon to emit bioluminescence that can be detected in vivo using an IVIS imaging system. Two rifampicin-resistant strains of S. aureus that were previously isolated from animals undergoing rifampicin treatment, S464P (resistant to low concentrations of rifampicin) and H481Y (resistant to high concentrations of rifampicin), were characterized and then compared with their parental strain for in vivo fitness to form biofilm infections in the absence of rifampicin. RESULTS The mutant S464P showed better adaptation to in vivo growth than either the parental strain or H481Y without selective pressure. Six days after implanting pre-colonized catheters, bioluminescent signals were seen from 100% of the catheters coated by the mutant S464P. In comparison, only 83% and 61% of the catheters coated by the parental strain and H481Y, respectively, maintained a signal in vivo. Rifampicin treatment of S464P biofilms in vivo resulted in a slight decline, but earlier rebound in bioluminescence from these catheters compared with the parental signal, whereas rifampicin had no affect on bioluminescence in mice infected with mutant H481Y. CONCLUSIONS The mutant with low-level rifampicin resistance appears to be better adapted to in vivo growth than the mutant that has high-level rifampicin resistance. Moreover, the former mutant may actually have a slight competitive advantage over the rifampicin-susceptible strain (parental), raising awareness for the occurrence of such strains in clinical environments.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15743898
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9055
      1. Author :
        Georgel, Philippe; Crozat, Karine; Lauth, Xavier; Makrantonaki, Evgenia; Seltmann, Holger; Sovath, Sosathya; Hoebe, Kasper; Du, Xin; Rutschmann, Sophie; Jiang, Zhengfan; Bigby, Timothy; Nizet, Victor; Zouboulis, Christos C; Beutler, Bruce
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        Infection and immunity
      6. Products :
      7. Volume :
        73
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Bioware; Chromosome Mapping; Eye Diseases; Fatty Acids, Monounsaturated; Likelihood Functions; Lod Score; Mice; Mice, Inbred C57BL; Oleic Acid; Receptors, Immunologic; Sequence Analysis, DNA; Skin; Staphylococcal Skin Infections; Stearoyl-CoA Desaturase; Streptococcus pyogenes; Time Factors; Toll-Like Receptor 2; Xen8.1, Xen20, Xen14
      12. Abstract :
        flake (flk), an N-ethyl-N-nitrosourea-induced recessive germ line mutation of C57BL/6 mice, impairs the clearance of skin infections by Streptococcus pyogenes and Staphylococcus aureus, gram-positive pathogens that elicit innate immune responses by activating Toll-like receptor 2 (TLR2). Positional cloning and sequencing revealed that flk is a novel allele of the stearoyl coenzyme A desaturase 1 gene (Scd1). flake homozygotes show reduced sebum production and are unable to synthesize the monounsaturated fatty acids (MUFA) palmitoleate (C(16:1)) and oleate (C(18:1)), both of which are bactericidal against gram-positive (but not gram-negative) organisms in vitro. However, intradermal MUFA administration to S. aureus-infected mice partially rescues the flake phenotype, which indicates that an additional component of the sebum may be required to improve bacterial clearance. In normal mice, transcription of Scd1-a gene with numerous NF-kappaB elements in its promoter--is strongly and specifically induced by TLR2 signaling. Similarly, the SCD1 gene is induced by TLR2 signaling in a human sebocyte cell line. These observations reveal the existence of a regulated, lipid-based antimicrobial effector pathway in mammals and suggest new approaches to the treatment or prevention of infections with gram-positive bacteria.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/16040962
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9990
      1. Author :
        Hart, Emily; Azzopardi, Kristy; Taing, Heng; Graichen, Florian; Jeffery, Justine; Mayadunne, Roshan; Wickramaratna, Malsha; O'Shea, Mike; Nijagal, Brunda; Watkinson, Rebecca; O'Leary, Stephen; Finnin, Barrie; Tait, Russell; Robins-Browne, Roy
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        The Journal of antimicrobial chemotherapy
      6. Products :
      7. Volume :
        65
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Bioware; Colony Count, Microbial; Disease Models, Animal; Female; Foreign Bodies; Humans; Mice; Mice, Inbred BALB C; Ofloxacin; Polymers; Prosthesis-Related Infections; Staphylococcal Infections; Staphylococcus aureus; Xen29
      12. Abstract :
        OBJECTIVES To assess support discs, comprising polyethylene terephthalate (PET), coated with different polymer/levofloxacin combinations for antimicrobial activity in an animal model of infection, in order to explore the use of specific polymer coatings incorporating levofloxacin as a means of reducing device-related infections. METHODS Aliphatic polyester-polyurethanes containing different ratios of poly(lactic acid) diol and poly(caprolactone) diol were prepared, blended with levofloxacin and then used to coat support discs. The in vitro levofloxacin release profiles from these discs were measured in aqueous solution. Mice were surgically implanted with the coated discs placed subcutaneously and infection was initiated by injection of 10(6) cfu of Staphylococcus aureus into the subcutaneous pocket containing the implant. After 5, 10, 20 and 30 days, the discs were removed, and the number of bacteria adhering to the implant and the residual antimicrobial activity of the discs were determined. RESULTS In vitro, the release of levofloxacin from the coated discs occurred at a constant rate and then reached a plateau at different timepoints, depending on the polymer preparation used. In vivo, none of the discs coated with polymer blends containing levofloxacin was colonized by S. aureus, whereas 94% of the discs coated with polymer alone were infected. All discs coated with levofloxacin-blended polymers displayed residual antimicrobial activity for at least 20 days post-implantation. CONCLUSIONS Bioerodable polyester-polyurethane polymer coatings containing levofloxacin can prevent bacterial colonization of implants in an intra-operative model of device-related infections.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20233779
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9035
      1. Author :
        Nejadnik, M Reza; Engelsman, Anton F; Saldarriaga Fernandez, Isabel C; Busscher, Henk J; Norde, Willem; van der Mei, Henny C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        The Journal of antimicrobial chemotherapy
      6. Products :
      7. Volume :
        62
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Bioware; Colony Count, Microbial; Mice; Mice, Inbred BALB C; Polymers; Prostheses and Implants; Rifampin; Silicone Elastomers; Staphylococcus aureus; Vancomycin; Xen29
      12. Abstract :
        OBJECTIVES Curing biomaterial-associated infection (BAI) frequently includes antibiotic treatment, implant removal and re-implantation. However, revision implants are at a greater risk of infection as they may attract bacteria from their infected surroundings. Polymer brush-coatings attract low numbers of bacteria, but the virtue of polymer brush-coatings in vivo has seldom been investigated. Here, we determine the possible benefits of polymer brush-coated versus pristine silicone rubber in revision surgery, using a murine model. METHODS BAI was induced in 26 mice by subcutaneous implantation of silicone rubber discs with a biofilm of Staphylococcus aureus Xen29. During the development of BAI, half of the mice received rifampicin/vancomycin treatment. After 5 days, the infected discs were removed from all mice, and either a polymer brush-coated or pristine silicone rubber disc was re-implanted. Revision discs were explanted after 5 days, and the number of cfu cultured from the discs and the surrounding tissue was determined. RESULTS None of the polymer brush-coated discs after antibiotic treatment appeared colonized by staphylococci, whereas 83% of the pristine silicone rubber discs were re-infected. Polymer brush-coated discs also showed reduced colonization rates in the absence of antibiotic treatment when compared with pristine silicone rubber discs. Tissue surrounding the discs was culture-positive in all cases. CONCLUSIONS Polymer brush-coatings are less prone to re-infection than pristine silicone rubber when used in revision surgery, i.e. when implanted in a subcutaneous pocket infected by a staphylococcal BAI. Antibiotic pre-treatment during the development of BAI hardly had any effect in preventing the colonization of pristine silicone rubber.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18812426
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9045
      1. Author :
        Engelsman, Anton F; Krom, Bastiaan P; Busscher, Henk J; van Dam, Gooitzen M; Ploeg, Rutger J; van der Mei, Henny C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Acta biomaterialia
      6. Products :
      7. Volume :
        5
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Bioware; Connective Tissue; Diffusion; Drug Implants; Female; Mice; Mice, Inbred BALB C; Nitric Oxide; Polyvinyls; Prostheses and Implants; pXen-5; Staphylococcal Infections; Xen29
      12. Abstract :
        Infection of surgical meshes used in abdominal wall reconstructions often leads to removal of the implant and increases patient morbidity due to repetitive operations and hospital administrations. Treatment with antibiotics is ineffective due to the biofilm mode of growth of the infecting bacteria and bears the risk of inducing antibiotic resistance. Hence there is a need for alternative methods to prevent and treat mesh infection. Nitric oxide (NO)-releasing coatings have been demonstrated to possess bactericidal properties in vitro. It is the aim of this study to assess possible benefits of a low concentration NO-releasing carbon-based coating on monofilament polypropylene meshes with respect to infection control in vitro and in vivo. When applied on surgical meshes, NO-releasing coatings showed significant bactericidal effect on in vitro biofilms of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and CNS. However, using bioluminescent in vivo imaging, no beneficial effects of this NO-releasing coating on subcutaneously implanted surgical meshes in mice could be observed.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19251498
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9019
      1. Author :
        Yang, Li; Johansson, Jan; Ridsdale, Ross; Willander, Hanna; Fitzen, Michael; Akinbi, Henry T; Weaver, Timothy E
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Journal of immunology (Baltimore, Md.: 1950)
      6. Products :
      7. Volume :
        184
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Bronchoalveolar Lavage Fluid; Hydrogen-Ion Concentration; Immunity, Innate; Klebsiella pneumoniae; Macrophages, Alveolar; Mice; Mice, Transgenic; Protein Precursors; Protein Structure, Tertiary; Proteolipids; Saposins; Staphylococcus aureus; Tissue Distribution; Xen5
      12. Abstract :
        Surfactant protein B (SP-B) proprotein contains three saposin-like protein (SAPLIP) domains: a SAPLIP domain corresponding to the mature SP-B peptide is essential for lung function and postnatal survival; the function of SAPLIP domains in the N-terminal (SP-BN) and C-terminal regions of the proprotein is not known. In the current study, SP-BN was detected in the supernatant of mouse bronchoalveolar lavage fluid (BALF) and in nonciliated bronchiolar cells, alveolar type II epithelial cells, and alveolar macrophages. rSP-BN indirectly promoted the uptake of bacteria by macrophage cell lines and directly killed bacteria at acidic pH, consistent with a lysosomal, antimicrobial function. Native SP-BN isolated from BALF also killed bacteria but only at acidic pH; the bactericidal activity of BALF at acidic pH was completely blocked by SP-BN Ab. Transgenic mice overexpressing SP-BN and mature SP-B peptide had significantly decreased bacterial burden and increased survival following intranasal inoculation with bacteria. These findings support the hypothesis that SP-BN contributes to innate host defense of the lung by supplementing the nonoxidant antimicrobial defenses of alveolar macrophages.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20007532
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9995
Back to Search
Select All  |  Deselect All