1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

271–280 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        International Journal of Cardiovascular Imaging
      6. Products :
      7. Volume :
        26
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        Cardiovascular disease; Atherosclerosis; Vulnerable plaque; Spectroscopy; Intravascular; in vivo imaging; MMPSense
      12. Abstract :
        Many apparent healthy persons die from cardiovascular disease, despite major advances in prevention and treatment of cardiovascular disease. Traditional cardiovascular risk factors are able to predict cardiovascular events in the long run, but fail to assess current disease activity or nearby cardiovascular events. There is a clear relation between the occurrence of cardiovascular events and the presence of so-called vulnerable plaques. These vulnerable plaques are characterized by active inflammation, a thin cap and a large lipid pool. Spectroscopy is an optical imaging technique which depicts the interaction between light and tissues, and thereby shows the biochemical composition of tissues. In recent years, impressive advances have been made in spectroscopy technology and intravascular spectroscopy is able to assess the composition of plaques of interest and thereby to identify and actually quantify plaque vulnerability. This review summarizes the current evidence for spectroscopy as a measure of plaque vulnerability and discusses the potential role of intravascular spectroscopic imaging techniques.
      13. URL :
        http://www.springerlink.com/content/kx38073782g98666/
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4552
      1. Author :
        Steve H. Thorne; Yoram Barak; Wenchuan Liang; Michael H. Bachmann; Jianghong Rao; Christopher H. Contag; A. Matin
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Molecular Cancer Therapeutics
      6. Products :
      7. Volume :
        8
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Cancer; in vivo imaging; drug discovery; chemotherapy
      12. Abstract :
        We report the discovery of a new prodrug, 6-chloro-9-nitro-5-oxo-5H-benzo(a)phenoxazine (CNOB). This prodrug is efficiently activated by ChrR6, the highly active prodrug activating bacterial enzyme we have previously developed. The CNOB/ChrR6 therapy was effective in killing several cancer cell lines in vitro. It also efficiently treated tumors in mice with up to 40% complete remission. 9-Amino-6-chloro-5H-benzo(a)phenoxazine-5-one (MCHB) was the only product of CNOB reduction by ChrR6. MCHB binds DNA; at nonlethal concentration, it causes cell accumulation in the S phase, and at lethal dose, it induces cell surface Annexin V and caspase-3 and caspase-9 activities. Further, MCHB colocalizes with mitochondria and disrupts their electrochemical potential. Thus, killing by CNOB involves MCHB, which likely induces apoptosis through the mitochondrial pathway. An attractive feature of the CNOB/ChrR6 regimen is that its toxic product, MCHB, is fluorescent. This feature proved helpful in in vitro studies because simple fluorescence measurements provided information on the kinetics of CNOB activation within the cells, MCHB killing mechanism, its generally efficient bystander effect in cells and cell spheroids, and its biodistribution. The emission wavelength of MCHB also permitted its visualization in live animals, allowing noninvasive qualitative imaging of MCHB in mice and the tumor microenvironment. This feature may simplify exploration of barriers to the penetration of MCHB in tumors and their amelioration.
      13. URL :
        http://mct.aacrjournals.org/content/8/2/333.abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4500
      1. Author :
        Mathew, B.; Lennon, F.E.; Siegler, J.; Mirzapoiazova, T.; Mambetsariev, N.; Sammani, S.; Gerhold, L.M.; Lariviere, P.J.; Chen, C.-T.; Garcia, J.G.N.; Salgia, R.; Moss, J.; Singleton, P.A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Anesthesia and Analgesia
      6. Products :
      7. Volume :
        112
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Cancer; flank tumor; In vivo; MMPSense 750; ProSense 680; tomography; VisEn FMT
      12. Abstract :
        <AbstractText Label=“BACKGROUND” NlmCategory=“BACKGROUND”>The possibility that μ opioid agonists can influence cancer recurrence is a subject of recent interest. Epidemiologic studies suggested that there were differences in cancer recurrence in breast and prostate cancer contingent on anesthetic regimens. In this study, we identify a possible mechanism for these epidemiologic findings on the basis of μ opioid receptor (MOR) regulation of Lewis lung carcinoma (LLC) tumorigenicity in cell and animal models.</AbstractText> <AbstractText Label=“METHODS” NlmCategory=“METHODS”>We used human lung tissue and human non-small cell lung cancer (NSCLC) cell lines and evaluated MOR expression using immunoblot and immunohistochemical analysis. LLC cells were treated with the peripheral opioid antagonist methylnaltrexone (MNTX) or MOR shRNA and evaluated for proliferation, invasion, and soft agar colony formation in vitro and primary tumor growth and lung metastasis in C57BL/6 and MOR knockout mice using VisEn fluorescence mediated tomography imaging and immunohistochemical analysis.</AbstractText> <AbstractText Label=“RESULTS” NlmCategory=“RESULTS”>We provide several lines of evidence that the MOR may be a potential target for lung cancer, a disease with high mortality and few treatment options. We first observed that there is ~5- to 10-fold increase in MOR expression in lung samples from patients with NSCLC and in several human NSCLC cell lines. The MOR agonists morphine and [d-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) increased in vitro LLC cell growth. Treatment with MNTX or silencing MOR expression inhibited LLC invasion and anchorage-independent growth by 50%-80%. Injection of MOR silenced LLC lead to a ~65% reduction in mouse lung metastasis. In addition, MOR knockout mice do not develop significant tumors when injected with LLC in comparison with wild-type controls. Finally, continuous infusion of the peripheral opioid antagonist MNTX attenuates primary LLC tumor growth and reduces lung metastasis.</AbstractText> <AbstractText Label=“CONCLUSIONS” NlmCategory=“CONCLUSIONS”>Taken together, our data suggest a possible direct effect of opiates on lung cancer progression, and provide a plausible explanation for the epidemiologic findings. Our observations further suggest a possible therapeutic role for opioid antagonists.</AbstractText>
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21156980
      14. Call Number :
        PKI @ user @ 8557
      15. Serial :
        4797
      1. Author :
        Min, Jung-Joon; Nguyen, Vu H.; Gambhir, Sanjiv S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Nuclear Medicine and Molecular Imaging
      6. Products :
      7. Volume :
        44
      8. Issue :
        1
      9. Page Numbers :
        15-24
      10. Research Area :
        N/A
      11. Keywords :
        Cancer; Cardiology; Gene delivery vector; Gene Therapy; Imaging / Radiology; Molecular Imaging; Nuclear Medicine; Oncology; Orthopedics; Xen26
      12. Abstract :
        Cancer persists as one of the most devastating diseases in the world. Problems including metastasis and tumor resistance to chemotherapy and radiotherapy have seriously limited the therapeutic effects of present clinical treatments. To overcome these limitations, cancer gene therapy has been developed over the last two decades for a broad spectrum of applications, from gene replacement and knockdown to vaccination, each with different requirements for gene delivery. So far, a number of genes and delivery vectors have been investigated, and significant progress has been made with several gene therapy modalities in clinical trials. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications. However, both have limitations and risks that restrict gene therapy applications, including the complexity of production, limited packaging capacity, and unfavorable immunological features. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents such as bacteria, bacteriophages, and bacteria-like particles. Recently, many molecular imaging techniques for safe, repeated, and high-resolution in vivo imaging of gene expression have been employed to assess vector-mediated gene expression in living subjects. In this review, molecular imaging techniques for monitoring biological gene delivery vehicles are described, and the specific use of these methods at different steps is illustrated. Linking molecular imaging to gene therapy will eventually help to develop novel gene delivery vehicles for preclinical study and support the development of future human applications.
      13. URL :
        http://link.springer.com/article/10.1007/s13139-009-0006-3
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        10003
      1. Author :
        Subbarayan, P. R.; Sarkar, M.; Nagaraja Rao, S.; Philip, S.; Kumar, P.; Altman, N.; Reis, I.; Ahmed, M.; Ardalan, B.; Lokeshwar, B. L.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        J Ethnopharmacol
      6. Products :
      7. Volume :
        142
      8. Issue :
        N/A
      9. Page Numbers :
        523-30
      10. Research Area :
        N/A
      11. Keywords :
        BxPC-3, BxPC-3-luc2, IVIS, Achyranthes; Animals; Antineoplastic Agents, Phytogenic/pharmacology/*therapeutic use; Apoptosis/*drug effects; Caspase 3/genetics/metabolism; Gene Expression/drug effects; Humans; Injections, Intraperitoneal; Medicine, Ayurvedic; Mice; Mice, Nude; Pancreatic Neoplasms/*drug therapy/genetics/metabolism; Phosphorylation; *Phytotherapy; Plant Extracts/pharmacology/*therapeutic use; Plant Leaves; Proto-Oncogene Proteins c-akt/metabolism; RNA, Messenger/metabolism; Xenograft Model Antitumor Assays
      12. Abstract :
        ETHNOPHARMACOLOGICAL RELEVANCE: Achyranthes aspera (Family Amaranthacea) is used for cancer therapy by ayurvedic medical practitioners in India. However, due to the non formal nature of its use, there are no systematic studies validating its medicinal properties. Thus, it's utility as an anti cancer agent remains anecdotal. Earlier, we demonstrated A. aspera to exhibit time and dose-dependent preferential cytotoxicity to cultured human pancreatic cancer cells. In this report we validate in vivo anti tumor properties of A. aspera. MATERIALS AND METHODS: The in vivo anti tumor activity of leaf extract (LE) was tested by intraperitoneal (IP) injections into athymic mice harboring human pancreatic tumor subcutaneous xenograft. Toxicity was monitored by recording changes in behavioral, histological, hematological and body weight parameters. RESULTS: Dosing LE to athymic mice by I.P. injection for 32 days showed no adverse reactions in treated mice. Compared to the control set, IP administration of LE to tumor bearing mice significantly reduced both tumor weight and volume. Gene expression analysis using Real time PCR methods revealed that LE significantly induced caspase-3 mRNA (p<0.001) and suppressed expression of the pro survival kinase Akt-1 (p<0.05). TUNEL assay and immunohistochemistry confirmed apoptosis induction by activation of caspase-3 and inhibiting Akt phosphorylation in treated sets. These results are in agreement with RT PCR data. CONCLUSION: Taken together, these data suggest A. aspera to have potent anti cancer property.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22640722
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10484
      1. Author :
        Goldberg, M.S.; Xing, D.; Ren, Y.; Orsulic, S.; Bhatia, S.N.; Sharp, P.A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Proceedings of the National Academy of Sciences of the United States of America
      6. Products :
      7. Volume :
        108
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        brca1; Cancer; In vivo imaging (VisEn); IVIS Spectrum imaging system; mice; siRNA; vivotag-750
      12. Abstract :
        Inhibition of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP1) with small molecules has been shown to be an effective treatment for ovarian cancer with BRCA mutations. Here, we report the in vivo administration of siRNA to Parp1 in mouse models of ovarian cancer. A unique member of the lipid-like materials known as lipidoids is shown to deliver siRNA to disseminated murine ovarian carcinoma allograft tumors following intraperitoneal (i.p.) injection. siParp1 inhibits cell growth, primarily by induction of apoptosis, in Brca1-deficient cells both in vitro and in vivo. Additionally, the treatment extends the survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells but not from Brca1 wild-type cells, confirming the proposed mechanism of synthetic lethality. Because there are 17 members of the Parp family, the inherent complementarity of RNA affords a high level of specificity for therapeutically addressing Parp1 in the context of impaired homologous recombination.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21187397
      14. Call Number :
        PKI @ user @ 8448
      15. Serial :
        4805
      1. Author :
        M van Eekelen; LS Sasportas; R Kasmieh; S Yip; J-L Figueiredo; DN Louis; R Weissleder; K Shah
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Oncogene
      6. Products :
      7. Volume :
        29
      8. Issue :
        22
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        brain tumor; glioma; human neural stem cells; TSP-1; endothelial cells; angiogenesis; in vivo imaging
      12. Abstract :
        Novel therapeutic agents combined with innovative modes of delivery and non-invasive imaging of drug delivery, pharmacokinetics and efficacy are crucial in developing effective clinical anticancer therapies. In this study, we have created and characterized multiple novel variants of anti-angiogenic protein thrombospondin (aaTSP-1) that comprises unique regions of three type-I-repeats of TSP-1 and used engineered human neural stem cells (hNSC) to provide sustained on-site delivery of secretable aaTSP-1 to tumor-vasculature. We show that hNSC-aaTSP-1 has anti-angiogenic effect on human brain and dermal microvascular endothelial cells co-cultured with established glioma cells and CD133+ glioma-initiating cells. Using human glioma cells and hNSC engineered with different combinations of fluorescent and bioluminescent marker proteins and employing multi-modality imaging techniques, we show that aaTSP-1 targets the vascular-component of gliomas and a single administration of hNSC-aaTSP-1 markedly reduces tumor vessel-density that results in inhibition of tumor-progression and increased survival in mice bearing highly malignant human gliomas. We also show that therapeutic hNSC do not proliferate and remain in an un-differentiated state in the brains of glioma-bearing mice. This study provides a platform for accelerated development of future cell-based therapies for cancer.
      13. URL :
        http://www.nature.com/onc/journal/v29/n22/abs/onc201075a.html
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4492
Back to Search
Select All  |  Deselect All