1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

281–290 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Beck, Benjamin H; Kim, Hyung-Gyoon; Kim, Hyunki; Samuel, Sharon; Liu, Zhiyong; Shrestha, Robin; Haines, Hilary; Zinn, Kurt; Lopez, Richard D
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Breast cancer research and treatment
      6. Products :
      7. Volume :
        122
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        4T1-luc2; Adenocarcinoma; Animals; Bioware; Breast Neoplasms; Cell Line, Tumor; Chemotaxis, Leukocyte; Cytotoxicity, Immunologic; Female; Humans; Immunotherapy, Adoptive; Indium Radioisotopes; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Mice, Knockout; Neoplasm Transplantation; Radiopharmaceuticals; Receptors, Antigen, T-Cell, gamma-delta; Spleen; Tissue Distribution; T-Lymphocyte Subsets; Tomography, Emission-Computed, Single-Photon; Transplantation, Heterologous; Transplantation, Isogeneic
      12. Abstract :
        In contrast to antigen-specific alphabeta-T cells (adaptive immune system), gammadelta-T cells can recognize and lyse malignantly transformed cells almost immediately upon encounter in a manner that does not require the recognition of tumor-specific antigens (innate immune system). Given the well-documented capacity of gammadelta-T cells to innately kill a variety of malignant cells, efforts are now actively underway to exploit the antitumor properties of gammadelta-T cells for clinical purposes. Here, we present for the first time preclinical in vivo mouse models of gammadelta-T cell-based immunotherapy directed against breast cancer. These studies were explicitly designed to approximate clinical situations in which adoptively transferred gammadelta-T cells would be employed therapeutically against breast cancer. Using radioisotope-labeled gammadelta-T cells, we first show that adoptively transferred gammadelta-T cells localize to breast tumors in a mouse model (4T1 mammary adenocarcinoma) of human breast cancer. Moreover, by using an antibody directed against the gammadelta-T cell receptor (TCR), we determined that localization of adoptively transferred gammadelta-T cells to tumor is a TCR-dependant process. Additionally, biodistribution studies revealed that adoptively transferred gammadelta-T cells traffic differently in tumor-bearing mice compared to healthy mice with fewer gammadelta-T cells localizing into the spleens of tumor-bearing mice. Finally, in both syngeneic (4T1) and xenogeneic (2Lmp) models of breast cancer, we demonstrate that adoptively transferred gammadelta-T cells are both effective against breast cancer and are otherwise well-tolerated by treated animals. These findings provide a strong preclinical rationale for using ex vivo expanded adoptively transferred gammadelta-T cells as a form of cell-based immunotherapy for the treatment of breast cancer. Additionally, these studies establish that clinically applicable methods for radiolabeling gammadelta-T cells allows for the tracking of adoptively transferred gammadelta-T cells in tumor-bearing hosts.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19763820
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8939
      1. Author :
        Takeshita, Fumitaka; Patrawala, Lubna; Osaki, Mitsuhiko; Takahashi, Ryou-u; Yamamoto, Yusuke; Kosaka, Nobuyoshi; Kawamata, Masaki; Kelnar, Kevin; Bader, Andreas G; Brown, David; Ochiya, Takahiro
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Molecular therapy: the journal of the American Society of Gene Therapy
      6. Products :
      7. Volume :
        18
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Aged; Animals; Bioware; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Down-Regulation; Humans; Male; Mice; MicroRNAs; Middle Aged; PC-3M-luc; Prostatic Neoplasms; Reverse Transcriptase Polymerase Chain Reaction
      12. Abstract :
        Recent reports have linked the expression of specific microRNAs (miRNAs) with tumorigenesis and metastasis. Here, we show that microRNA (miR)-16, which is expressed at lower levels in prostate cancer cells, affects the proliferation of human prostate cancer cell lines both in vitro and in vivo. Transient transfection with synthetic miR-16 significantly reduced cell proliferation of 22Rv1, Du145, PPC-1, and PC-3M-luc cells. A prostate cancer xenograft model revealed that atelocollagen could efficiently deliver synthetic miR-16 to tumor cells on bone tissues in mice when injected into tail veins. In the therapeutic bone metastasis model, injection of miR-16 with atelocollagen via tail vein significantly inhibited the growth of prostate tumors in bone. Cell model studies indicate that miR-16 likely suppresses prostate tumor growth by regulating the expression of genes such as CDK1 and CDK2 associated with cell-cycle control and cellular proliferation. There is a trend toward lower miR-16 expression in human prostate tumors versus normal prostate tissues. Thus, this study indicates the therapeutic potential of miRNA in an animal model of cancer metastasis with systemic miRNA injection and suggest that systemic delivery of miR-16 could be used to treat patients with advanced prostate cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19738602
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8947
      1. Author :
        Hu, Guohong; Chong, Robert A; Yang, Qifeng; Wei, Yong; Blanco, Mario A; Li, Feng; Reiss, Michael; Au, Jessie L-S; Haffty, Bruce G; Kang, Yibin
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Cancer cell
      6. Products :
      7. Volume :
        15
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Aldehyde Dehydrogenase; Animals; Bioware; Breast Neoplasms; Cell Adhesion Molecules; Cell Line, Tumor; Chromosomes, Human, Pair 8; Drug Resistance, Neoplasm; Gene Expression Profiling; Genome, Human; Humans; MDA-MB-231-D3H2LN cells; Mice; Mice, Nude; Neoplasm Metastasis; Neoplasm Recurrence, Local; Prognosis; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-met; Receptors, Growth Factor; Survival Rate; Xenograft Model Antitumor Assays
      12. Abstract :
        Targeted therapy for metastatic diseases relies on the identification of functionally important metastasis genes from a large number of random genetic alterations. Here we use a computational algorithm to map minimal recurrent genomic alterations associated with poor-prognosis breast cancer. 8q22 genomic gain was identified by this approach and validated in an extensive collection of breast tumor samples. Regional gain of 8q22 elevates expression of the metastasis gene metadherin (MTDH), which is overexpressed in more than 40% of breast cancers and is associated with poor clinical outcomes. Functional characterization of MTDH revealed its dual role in promoting metastatic seeding and enhancing chemoresistance. These findings establish MTDH as an important therapeutic target for simultaneously enhancing chemotherapy efficacy and reducing metastasis risk.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19111877
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8957
      1. Author :
        Blagbrough, Ian S; Zara, Chiara
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Pharmaceutical research
      6. Products :
      7. Volume :
        26
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Cats; Cattle; Disease Models, Animal; Dna; Dogs; Drug Delivery Systems; Female; Fishes; Gene Therapy; Horses; Humans; Mice; PC-3M-luc; Pregnancy; Primates; Rats; RNA, Small Interfering; Sheep; Swine
      12. Abstract :
        Nanoparticles, including lipopolyamines leading to lipoplexes, liposomes, and polyplexes are targeted drug carrier systems in the current search for a successful delivery system for polynucleic acids. This review is focused on the impact of gene and siRNA delivery for studies of efficacy, pharmacodynamics, and pharmacokinetics within the setting of the wide variety of in vivo animal models now used. This critical appraisal of the recent literature sets out the different models that are currently being investigated to bridge from studies in cell lines through towards clinical reality. Whilst many scientists will be familiar with rodent (murine, fecine, cricetine, and musteline) models, few probably think of fish as a clinically relevant animal model, but zebrafish, madake, and rainbow trout are all being used. Larger animal models include rabbit, cat, dog, and cow. Pig is used both for the prevention of foot-and-mouth disease and human diseases, sheep is a model for corneal transplantation, and the horse naturally develops arthritis. Non-human primate models (macaque, common marmoset, owl monkey) are used for preclinical gene vector safety and efficacy trials to bridge the gap prior to clinical studies. We aim for the safe development of clinically effective delivery systems for DNA and RNAi technologies.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18841450
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8965
      1. Author :
        Cheung, Alison M.; Brown, Allison S.; Shaked, Yuval; Franco, Marcela; Kerbel, Robert S.; Foster, F. S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2006
      5. Publication :
        AACR Meeting Abstracts
      6. Products :
      7. Volume :
        2006
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; PC-3M-luc; hVEGF-luc-PC3M
      12. Abstract :
        Background: Preclinical cancer studies increasingly utilize non-invasive imaging modalities. In the current study we have monitored tumor growth and vascular changes using two in vivo imaging tools: surface bioluminescence (BLI) and ultrasound biomicroscopy (UBM). BLI permits visualization of tumor location in the context of the whole body, including metastases localization. UBM imaging then permits high resolution 3D volumetric tumor measurements as well as blood flow estimates down to 200 microns/s. Measurements obtained from these complementary modalities were analyzed and compared to conventional, biochemical markers. Methods: Human prostate cancer cells expressing Firefly Luciferase constitutively (PC-3M-luc-C6) or under the control of hVEGF promoter (hVEGF-luc/PC3M) were implanted into male nude mice via an intradermal or subcutaneous injection. Tumor-bearing mice were subsequently imaged every week for nine weeks starting at week 2, by UBM to measure tumor burden using 3D volumetric analysis, or to estimate blood flow using speckle-variance flow processing. Surface bioluminescence was also acquired 10 minutes post i.p. injection of D-luciferin. In a longitudinal drug intervention study anti-hVEGF antibody (Bevacizumab, 200 ug) was injected i.p. into nude mice with subcutaneous xenografts of PC-3M-luc-C6 or hVEGF-luc/PC-3M twice per week for three weeks, starting at 14 days post-xenograft. UBM and surface BLI imaging were conducted every week. In order to study the correlation between VEGF expression in hVEGF-luc/PC3M xenografts (estimated by BLI) to tumor hypoxia level, mice were injected with pimonidazole hydrochloride (60 mg/kg i.v.) after three weeks of treatment and tumors were harvested for immunostaining analysis. Results: Surface BLI outputs (photons/s) from subcutaneous PC-3M-luc-C6 xenografts were highly correlated to tumor volumes measured using 3D UBM for small tumors (<100 mm3, r=0.92, n=8), yet poorly correlated to tumors of large size (>100 mm3, r=0.079, n=8). BLI signals in subcutaneous hVEGF-luc/PC3M xenografts showed an inverse trend to tumor blood flow. PC-3M-luc-C6 tumors treated with Bevacizumab showed growth inhibition by day 28 as demonstrated by 3D UBM (control vs treated = 67.27 vs 48.54 mm3). Moreover, control xenografts showed increased average BLI output over time, whereas treated tumors showed variation in BLI output. Necrosis, hypoxia and blood flow estimates were also investigated. Conclusions: Surface bioluminescence imaging demonstrated high correlations to accurate 3D UBM volumetric measurements of small tumor volumes, suggesting its usefulness in tracking early tumor growth quantitatively in drug intervention studies. A complementary imaging modality, like ultrasound biomicroscopy, is recommended to monitor tumor burden in advanced stages.
      13. URL :
        http://www.aacrmeetingabstracts.org/cgi/content/abstract/2006/1/646-a
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8977
      1. Author :
        Singh, Abhinav; Massoud, Tarik F; Deroose, Christophe; Gambhir, Sanjiv S
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Seminars in nuclear medicine
      6. Products :
      7. Volume :
        38
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; Diagnostic Imaging; Genes, Reporter; Humans; Male; Molecular Probe Techniques; Neoplasm Proteins; PC-3M-luc; Prostatic Neoplasms; Tumor Markers, Biological
      12. Abstract :
        Prostate cancer remains an important and growing health problem. Advances in imaging of prostate cancer may help to achieve earlier and more accurate diagnosis and treatment. We review the various strategies using reporter genes for molecular imaging of prostate cancer. These approaches are emerging as valuable tools for monitoring gene expression in laboratory animals and humans. Further development of more sensitive and selective reporters, combined with improvements in detection technology, will consolidate the position of reporter gene imaging as a versatile method for understanding of intracellular biological processes and the underlying molecular basis of prostate cancer, as well as potentially establishing a future role in the clinical management of patients afflicted with this disease.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18096460
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8966
      1. Author :
        Neal, Robert E, 2nd; Singh, Ravi; Hatcher, Heather C; Kock, Nancy D; Torti, Suzy V; Davalos, Rafael V
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Breast cancer research and treatment
      6. Products :
      7. Volume :
        123
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Cell Line, Tumor; Electrochemotherapy; Electrodes; Female; Humans; Mammary Neoplasms, Experimental; MDA-MB-231-D3H1 cells; Mice; Mice, Nude; Needles; Xenograft Model Antitumor Assays
      12. Abstract :
        Irreversible electroporation (IRE) is a therapeutic technology for the ablation of soft tissues using electrodes to deliver intense but short electric pulses across a cell membrane, creating nanopores that lead to cell death. This phenomenon only affects the cell membrane, leaving the extracellular matrix and sensitive structures intact, making it a promising technique for the treatment many types of tumors. In this paper, we present the first in vivo study to achieve tumor regression using a translatable, clinically relevant single needle electrode for treatment administration. Numerical models of the electric field distribution for the protocol used suggest that a 1000 V/cm field threshold is sufficient to treat a tumor, and that the electric field distribution will slightly decrease if the same protocol were used on a tumor deep seated within a human breast. Tumor regression was observed in 5 out of 7 MDA-MB231 human mammary tumors orthotopically implanted in female Nu/Nu mice, with continued growth in controls.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20191380
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8988
      1. Author :
        Luo, Z R; Huang, T; Li, W; Shen, B Z
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Panminerva medica
      6. Products :
      7. Volume :
        52
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; B16-F10-luc-G5 cells; Bioware; Diagnostic Imaging; Luminescence; Melanoma, Experimental; Mice; Mice, Inbred BALB C; Molecular Dynamics Simulation
      12. Abstract :
        AIM The aim of this study was to evaluate the veracity and sensitivity of in-vivo imaging system (IVIS) for inspection of tumor dynamic morphology. METHODS Mouse melanoma cells (B16-F10-luc-G5) in 100 mL media were seeded into a 96-well plate by 1:2 serial dilution from 10000 cells (well #1) to 78 cells (well #8). The plate was imaged using IVIS system to evaluate its sensitivity for luminescence. Ten Bablc mice with tumor cells were injected subcutaneously (1 x 10(5) in 100 mL) and tumor luminescence was detected by IVIS at Day 0, Day 3, Day 5, Day 7 and Day 9. RESULTS As few as 78 tumor cells were detectable by IVIS. A strong correlation between number of tumor cells and bioluminescence (R2=0.99) was also demonstrated. Tumor luminescence were observed in all mice by IVIS at all days, and there was significant difference (P<0.01) between each two days from Day 0 to Day 9. Moreover, tumor dynamic morphology could be monitored by IVIS when it is invisible. CONCLUSION Compared with conventional methods, with high veracity and sensitivity, IVIS system should be recommended as an effective method for inspection of tumor dynamic morphology.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20228722
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8995
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Blood
      6. Products :
      7. Volume :
        112
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antigen Presentation; Antigens, Neoplasm; B16-F10-luc-G5 cells; Bioware; B-Lymphocytes; Cell Adhesion; Cell Line, Tumor; Cell Movement; dendritic cells; Female; Lectins, C-Type; Lymphatic Metastasis; Lymphatic System; Macrophages; Male; Mannose-Binding Lectins; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Mice, Knockout; Receptors, Cell Surface; T-Lymphocytes
      12. Abstract :
        Macrophage mannose receptor (MR) participates in pathogen recognition, clearance of endogenous serum glycoproteins, and antigen presentation. MR is also present on lymphatic vessels, where its function is unknown. Here we show that migration of lymphocytes from the skin into the draining lymph nodes through the afferent lymphatics is reduced in MR-deficient mice, while the structure of lymphatic vasculature remains normal in these animals. Moreover, in a tumor model the primary tumors grow significantly bigger in MR(-/-) mice than in the wild-type (WT) controls, whereas the regional lymph node metastases are markedly smaller. Adhesion of both normal lymphocytes and tumor cells to lymphatic vessels is significantly decreased in MR-deficient mice. The ability of macrophages to present tumor antigens is indistinguishable between the 2 genotypes. Thus, MR on lymphatic endothelial cells is involved in leukocyte trafficking and contributes to the metastatic behavior of cancer cells. Blocking of MR may provide a new approach to controlling inflammation and cancer metastasis by targeting the lymphatic vasculature.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18434610
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9000
Back to Search
Select All  |  Deselect All