1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

301–310 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Journal of orthopaedic research: official publication of the Orthopaedic Research Society
      6. Products :
      7. Volume :
        26
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antibody Formation; Bacterial Proteins; Bioware; Disease Models, Animal; DNA, Bacterial; Endonucleases; Female; Mice; Mice, Inbred C57BL; Micrococcal Nuclease; Osteolysis; Osteomyelitis; Prosthesis-Related Infections; Reverse Transcriptase Polymerase Chain Reaction; Staphylococcal Infections; Staphylococcus aureus; Tibia; Xen29
      12. Abstract :
        Although osteomyelitis (OM) remains a serious problem in orthopedics, progress has been limited by the absence of an in vivo model that can quantify the bacterial load, metabolic activity of the bacteria over time, immunity, and osteolysis. To overcome these obstacles, we developed a murine model of implant-associated OM in which a stainless steel pin is coated with Staphylococcus aureus and implanted transcortically through the tibial metaphysis. X-ray and micro-CT demonstrated concomitant osteolysis and reactive bone formation, which was evident by day 7. Histology confirmed all the hallmarks of implant-associated OM, namely: osteolysis, sequestrum formation, and involucrum of Gram-positive bacteria inside a biofilm within necrotic bone. Serology revealed that mice mount a protective humoral response that commences with an IgM response after 1 week, and converts to a specific IgG2b response against specific S. aureus proteins by day 11 postinfection. Real-time quantitative PCR (RTQ-PCR) for the S. aureus specific nuc gene determined that the peak bacterial load occurs 11 days postinfection. This coincidence of decreasing bacterial load with the generation of specific antibodies is suggestive of protective humoral immunity. Longitudinal in vivo bioluminescent imaging (BLI) of luxA-E transformed S. aureus (Xen29) combined with nuc RTQ-PCR demonstrated the exponential growth phase of the bacteria immediately following infection that peaks on day 4, and is followed by the biofilm growth phase at a significantly lower metabolic rate (p < 0.05). Collectively, these studies demonstrate the first quantitative model of implant-associated OM that defines the kinetics of microbial growth, osteolysis, and humoral immunity following infection.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17676625
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9047
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Lasers in surgery and medicine
      6. Products :
      7. Volume :
        39
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Anti-Infective Agents; Biofilms; Dental Pulp Cavity; Dental Pulp Diseases; Endodontics; Humans; Luminescence; Photochemotherapy; Polyethyleneimine; Porphyrins; Proteus Infections; Proteus mirabilis; Pseudomonas aeruginosa; Pseudomonas Infections; Xen5; Xen44
      12. Abstract :
        BACKGROUND AND OBJECTIVE To compare the effectiveness of antimicrobial photodynamic therapy (PDT), standard endodontic treatment and the combined treatment to eliminate bacterial biofilms present in infected root canals. STUDY DESIGN/MATERIALS AND METHODS Ten single-rooted freshly extracted human teeth were inoculated with stable bioluminescent Gram-negative bacteria, Proteus mirabilis and Pseudomonas aeruginosa to form 3-day biofilms in prepared root canals. Bioluminescence imaging was used to serially quantify bacterial burdens. PDT employed a conjugate between polyethylenimine and chlorin(e6) as the photosensitizer (PS) and 660-nm diode laser light delivered into the root canal via a 200-micro fiber, and this was compared and combined with standard endodontic treatment using mechanical debridement and antiseptic irrigation. RESULTS Endodontic therapy alone reduced bacterial bioluminescence by 90% while PDT alone reduced bioluminescence by 95%. The combination reduced bioluminescence by >98%, and importantly the bacterial regrowth observed 24 hours after treatment was much less for the combination (P<0.0005) than for either single treatment. CONCLUSIONS Bioluminescence imaging is an efficient way to monitor endodontic therapy. Antimicrobial PDT may have a role to play in optimized endodontic therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17066481
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9997
      1. Author :
        Min, Jung-Joon; Nguyen, Vu H.; Gambhir, Sanjiv S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Nuclear Medicine and Molecular Imaging
      6. Products :
      7. Volume :
        44
      8. Issue :
        1
      9. Page Numbers :
        15-24
      10. Research Area :
        N/A
      11. Keywords :
        Cancer; Cardiology; Gene delivery vector; Gene Therapy; Imaging / Radiology; Molecular Imaging; Nuclear Medicine; Oncology; Orthopedics; Xen26
      12. Abstract :
        Cancer persists as one of the most devastating diseases in the world. Problems including metastasis and tumor resistance to chemotherapy and radiotherapy have seriously limited the therapeutic effects of present clinical treatments. To overcome these limitations, cancer gene therapy has been developed over the last two decades for a broad spectrum of applications, from gene replacement and knockdown to vaccination, each with different requirements for gene delivery. So far, a number of genes and delivery vectors have been investigated, and significant progress has been made with several gene therapy modalities in clinical trials. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications. However, both have limitations and risks that restrict gene therapy applications, including the complexity of production, limited packaging capacity, and unfavorable immunological features. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents such as bacteria, bacteriophages, and bacteria-like particles. Recently, many molecular imaging techniques for safe, repeated, and high-resolution in vivo imaging of gene expression have been employed to assess vector-mediated gene expression in living subjects. In this review, molecular imaging techniques for monitoring biological gene delivery vehicles are described, and the specific use of these methods at different steps is illustrated. Linking molecular imaging to gene therapy will eventually help to develop novel gene delivery vehicles for preclinical study and support the development of future human applications.
      13. URL :
        http://link.springer.com/article/10.1007/s13139-009-0006-3
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        10003
      1. Author :
        Curbelo, J; Moulton, K; Willard, S
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Theriogenology
      6. Products :
      7. Volume :
        73
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Cattle; Escherichia coli; Female; Genitalia, Female; Optical Phenomena; Photons; Xen14
      12. Abstract :
        The objectives of this study were to (1) characterize the photonic properties of Escherichia coli-Xen14 and (2) conduct photonic imaging of E. coli-Xen14 within bovine reproductive tract segments (RTS) ex vivo (Bos indicus). E. coli-Xen14 was grown for 24h in Luria Bertani medium (LB), with or without kanamycin (KAN). Every 24h, for an 8-d interval, inoculums were imaged and photonic emissions (PE) collected. Inoculums were subcultured and plated daily to determine the colony forming units (CFU) and ratio of photon emitters to nonemitters. In the second objective, abattoir-derived bovine reproductive tracts (n=9) were separated into posterior and anterior vagina, cervix, uterine body, and uterine horns. Two concentrations (3.2x10(8) and 3.2x10(6) CFU/200microL for relative [High] and [Low], respectively) of E. coli-Xen14 were placed in translucent tubes for detection of PE through RTS. The CFU did not differ (P=0.31) over time with or without KAN presence; they remained stable with 99.93% and 99.98% photon emitters, respectively. However, PE were lower (P<0.0001) in cultures containing KAN than in those containing no KAN (629.8+/-117.7 vs. 3012.0+/-423.5 relative lights units per second [RLU/sec], respectively). On average, the percentage of PE between RTS, for both concentrations, was higher (P<0.05) in the uterine body. In summary, E. coli-Xen14 remained stable with respect to the proportions of photon emitters with or without KAN (used to selectively culture E. coli-Xen14). However, KAN presence suppressed photonic activity. The ability to detect PE through various segments of the reproductive tract demonstrated the feasibility of monitoring the presence of E. coli-Xen14 in the bovine reproductive tract ex vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19819541
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        10004
      1. Author :
        Sharma, Prashant K; Engels, Eefje; Van Oeveren, Wim; Ploeg, Rutger J; van Henny der Mei, C; Busscher, Henk J; Van Dam, Gooitzen M; Rakhorst, Gerhard
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Surgery
      6. Products :
      7. Volume :
        147
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bacteroides fragilis; Diagnostic Imaging; Disease Progression; Escherichia coli; Luciferases, Bacterial; Luminescent Agents; Male; Peritoneal Lavage; Peritonitis; Rats; Rats, Wistar; Xen14
      12. Abstract :
        BACKGROUND Bacterial peritonitis is a life-threatening abdominal infection associated with high morbidity and mortality. The rat is a popular animal model for studying peritonitis and its treatment, but longitudinal monitoring of the progression of peritonitis in live animals has been impossible until now and thus required a large number of animals. Our objective was to develop a noninvasive in vivo imaging technique to monitor the spatiotemporal spread of bacterial peritonitis. METHODS Peritonitis was induced in 8 immunocompetent male Wistar rats by placing fibrin clots containing 5x10(8) cells of both Bacteroides fragilis (American Type Tissue Culture [ATCC)] 25,285 and bioluminescent Escherichia coli Xen14. After 1 or 2 days, infected clots were removed and open abdomen lavage was performed. In vivo bioluminescent imaging was used to monitor the spread of peritonitis. RESULTS Bioluminescent in vivo imaging showed an increase in the area of spread, and the number of E. coli tripled into the rat's abdominal cavity on day 1 after clot insertion; however, on day 2, encapsulation of the clot confined bacterial spread. Bioluminescent E. coli respread over the peritoneal cavity after lavage; within 10 days, however, in vivo imaging showed a decrease of 3-4 orders of magnitude in bacterial load. CONCLUSION Bioluminescent in vivo imaging can be effectively used to monitor the spatiotemporal behavior of the peritonitis during 3 different stages of the disease process: initiation, treatment, and follow-up. Imaging allows researchers to repeatedly image the same animal, thereby reducing variability and providing greater confidence in determining treatment efficacies for therapeutic interventions using a small number of animals.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19733882
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        10005
      1. Author :
        Contag, C H; Jenkins, D; Contag, P R; Negrin, R S
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2000
      5. Publication :
        Neoplasia (New York, N.Y.)
      6. Products :
      7. Volume :
        2
      8. Issue :
        1-2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Diagnostic Imaging; Genes, Reporter; Green Fluorescent Proteins; Humans; Luciferases; Luminescent Proteins; Neoplasms; PC-3M-luc; Time Factors; Tumor Cells, Cultured
      12. Abstract :
        Revealing the cellular and molecular changes associated with cancer, as they occur in intact living animal models of human neoplastic disease, holds tremendous potential for understanding disease mechanisms and elucidating effective therapies. Since light is transmitted through mammalian tissues, at a low level, optical signatures conferred on tumor cells by expression of reporter genes encoding bioluminescent and fluorescent proteins can be detected externally using sensitive photon detection systems. Expression of reporter genes, such as the bioluminescent enzyme firefly luciferase (Luc) or variants of green fluorescent protein (GFP) in transformed cells, can effectively be used to reveal molecular and cellular features of neoplasia in vivo. Tumor cell growth and regression in response to various therapies have been evaluated non-invasively in living experimental animals using these reporter genes. Detection of Luc-labeled cells in vivo was extremely sensitive with signals over background from as few as 1000 human tumor cells distributed throughout the peritoneal cavity of a mouse with linear relationships between cell number and signal intensity over five logs. GFP offers the strength of high-resolution ex vivo analyses following in vivo localization of the tumor. The dynamic range of Luc detection allows the full disease course to be monitored since disease progression from small numbers of cells to extensive disease can be assessed. As such, therapies that target minimal disease as well as those designed for late stage disease can be readily evaluated in animal models. Real time spatiotemporal analyses of tumor cell growth can reveal the dynamics of neoplastic disease, and facilitate rapid optimization of effective treatment regimens. Thus, these methods improve the predictability of animal models of human disease as study groups can be followed over time, and can accelerate the development of therapeutic strategies.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/10933067
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8985
      1. Author :
        Hardy, Jonathan; Chu, Pauline; Contag, Christopher H
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Disease models & mechanisms
      6. Products :
      7. Volume :
        2
      8. Issue :
        1-2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Bone Marrow; Bone Marrow Cells; Disease Models, Animal; Female; Host-Pathogen Interactions; Humans; Knee Joint; Listeria monocytogenes; Listeriosis; Mice; Mice, Inbred BALB C; Mutation; pXen-5; Tibia
      12. Abstract :
        Murine listeriosis is one of the most comprehensive and well-studied models of infection, and Listeria monocytogenes has provided seminal information regarding bacterial pathogenesis. However, many aspects of the mouse model remain poorly understood, including carrier states and chronic colonization which represent important features of the spectrum of host-pathogen interaction. Bone marrow has recently been shown to harbor L. monocytogenes, which spreads from this location to the central nervous system. Bone could, therefore, be an important chronic reservoir, but this infection is difficult to study because it involves only a few bacteria and the extent of infection cannot be assessed until after the animal is sacrificed. We employed in vivo bioluminescence imaging to localize L. monocytogenes bone infections over time in live mice, revealing that the bacteria grow in discrete foci. These lesions can persist in many locations in the legs of mice and are not accompanied by a histological indication such as granuloma or a neutrophil infiltratate. We demonstrate that highly attenuated hly mutants, which have defective intracellular replication, are capable of prolonged focal infection of the bone marrow for periods of up to several weeks. These results support the recently proposed hypothesis that the bone marrow is a unique niche for L. monocytogenes.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19132117
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9018
      1. Author :
        Matthias Nahrendorf, Peter Waterman, Greg Thurber, Kevin Groves, Milind Rajopadhye, Peter Panizzi, Brett Marinelli, Elena Aikawa, Mikael J Pittet, Filip K Swirski and Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Arteriosclerosis, Thrombosis, and Vascular Biology
      6. Products :
      7. Volume :
        29
      8. Issue :
        10
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        FMT-CT; molecular imaging; atherosclerosis; protease activity; inflammation; in vivo imaging; fluorescence molecular tomography; ProSense
      12. Abstract :
        Objective: Proteases are emerging biomarkers of inflammatory diseases. In atherosclerosis, these enzymes are often secreted by inflammatory macrophages, digest the extracellular matrix of the fibrous cap and destabilize atheromata. Protease function can be monitored with protease activatable imaging probes and quantitated in vivo by fluorescence molecular tomography (FMT). To address two major constraints currently associated with imaging of murine atherosclerosis (lack of highly sensitive probes and absence of anatomical information), we compared protease sensors (PS) of variable size and pharmacokinetics and co-registered FMT datasets with computed tomography (FMT-CT).

        Methods and results: Co-registration of FMT and CT was achieved with a multimodal imaging cartridge containing fiducial markers detectable by both modalities. A high-resolution CT angiography protocol accurately localized fluorescence to the aortic root of atherosclerotic apoE-/- mice. To identify suitable sensors, we first modeled signal kinetics in-silico and then compared three probes with identical oligo-L-lysine cleavage sequences: PS-5, 5nm in diameter containing 2 fluorochromes , PS-25, a 25nm version with an elongated lysine chain and PS-40, a polymeric nanoparticle. Serial FMT-CT showed fastest kinetics for PS-5 but, surprisingly, highest fluorescence in lesions of the aortic root for PS-40. PS-40 robustly reported therapeutic effects of atorvastatin, corroborated by ex vivo imaging and qPCR for the model protease cathepsin B.

        Conclusions: FMT-CT is a robust and observer-independent tool for non-invasive assessment of inflammatory murine atherosclerosis. Reporter-containing nanomaterials may have unique advantages over small molecule agents for in vivo imaging.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746251/?tool=pubmed
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4568
      1. Author :
        Li, Min; Rigby, Kevin; Lai, Yuping; Nair, Vinod; Peschel, Andreas; Schittek, Birgit; Otto, Michael
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Antimicrobial agents and chemotherapy
      6. Products :
      7. Volume :
        53
      8. Issue :
        10
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Anti-Bacterial Agents; Bioware; Blotting, Southern; Chromatography, Thin Layer; Computational Biology; Cytochromes c; Genetic Complementation Test; Humans; Microscopy, Electron, Scanning; Microscopy, Immunoelectron; Mutagenesis; Peptides; Phospholipids; Polymerase Chain Reaction; Staphylococcus aureus; Xen36
      12. Abstract :
        Antimicrobial peptides (AMPs) form an important part of the innate host defense. In contrast to most AMPs, human dermcidin has an anionic net charge. To investigate whether bacteria have developed specific mechanisms of resistance to dermcidin, we screened for mutants of the leading human pathogen, Staphylococcus aureus, with altered resistance to dermcidin. To that end, we constructed a plasmid for use in mariner-based transposon mutagenesis and developed a high-throughput cell viability screening method based on luminescence. In a large screen, we did not find mutants with strongly increased susceptibility to dermcidin, indicating that S. aureus has no specific mechanism of resistance to this AMP. Furthermore, we detected a mutation in a gene of unknown function that resulted in significantly increased resistance to dermcidin. The mutant strain had an altered membrane phospholipid pattern and showed decreased binding of dermcidin to the bacterial surface, indicating that dermcidin interacts with membrane phospholipids. The mode of this interaction was direct, as shown by assays of dermcidin binding to phospholipid preparations, and specific, as the resistance to other AMPs was not affected. Our findings indicate that dermcidin has an exceptional value for the human innate host defense and lend support to the idea that it evolved to evade bacterial resistance mechanisms targeted at the cationic character of most AMPs. Moreover, they suggest that the antimicrobial activity of dermcidin is dependent on the interaction with the bacterial membrane and might thus assist with the determination of the yet unknown mode of action of this important human AMP.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19596877
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9983
      1. Author :
        Shi, Lei; Takahashi, Kazue; Dundee, Joseph; Shahroor-Karni, Sarit; Thiel, Steffen; Jensenius, Jens Christian; Gad, Faten; Hamblin, Michael R; Sastry, Kedarnath N; Ezekowitz, R Alan B
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2004
      5. Publication :
        The Journal of experimental medicine
      6. Products :
      7. Volume :
        199
      8. Issue :
        10
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Disease Susceptibility; DNA, Bacterial; Lung; Mannose-Binding Lectin; Mice; Mice, Knockout; Reference Values; Reverse Transcriptase Polymerase Chain Reaction; Spleen; Staphylococcal Infections; Xen8.1
      12. Abstract :
        Gram-positive organisms like Staphylococcus aureus are a major cause of morbidity and mortality worldwide. Humoral response molecules together with phagocytes play a role in host responses to S. aureus. The mannose-binding lectin (MBL, also known as mannose-binding protein) is an oligomeric serum molecule that recognizes carbohydrates decorating a broad range of infectious agents including S. aureus. Circumstantial evidence in vitro and in vivo suggests that MBL plays a key role in first line host defense. We tested this contention directly in vivo by generating mice that were devoid of all MBL activity. We found that 100% of MBL-null mice died 48 h after exposure to an intravenous inoculation of S. aureus compared with 45% mortality in wild-type mice. Furthermore, we demonstrated that neutrophils and MBL are required to limit intraperitoneal infection with S. aureus. Our study provides direct evidence that MBL plays a key role in restricting the complications associated with S. aureus infection in mice and raises the idea that the MBL gene may act as a disease susceptibility gene against staphylococci infections in humans.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15148336
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9994
Back to Search
Select All  |  Deselect All