1. Resources
  2. Citations Library

Headers act as filters

  • Records
      1. Author :
        Smith, Eric L; Schuchman, Edward H
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Molecular therapy: the journal of the American Society of Gene Therapy
      6. Products :
      7. Volume :
        16
      8. Issue :
        9
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antineoplastic Agents; Autophagy; B16-F10-luc-G5 cells; Bioware; Cell Survival; Cells, Cultured; Ceramides; Cesium Radioisotopes; CHO Cells; Combined Modality Therapy; Cricetinae; Cricetulus; Endothelium, Vascular; Female; Gamma Rays; Gene Expression Regulation, Enzymologic; Gene Therapy; Humans; Melanoma, Experimental; Mice; Sphingomyelin Phosphodiesterase
      12. Abstract :
        Exposure of cells or animals to stress frequently induces acid sphingomyelinase (ASM)-mediated ceramide production that leads to cell death. Consistent with this, overexpression of ASM in subcutaneous B16-F10 mouse melanomas, in combination with irradiation, resulted in tumors that were up to 12-fold smaller than irradiated control melanomas. Similarly, when irradiated melanomas were pretreated with a single, peritumoral injection of recombinant ASM (rhASM), the tumors were up to threefold smaller. The in vivo effect of ASM was likely due to enhanced cell death of the tumor cells themselves, as well as the surrounding microvascular endothelial cells. In vitro, rhASM had little or no effect on the growth of tumor cells, even in combination with irradiation. However, when the culture media was acidified to mimic the acidic microenvironment of solid tumors, rhASM-mediated cell death was markedly enhanced when combined with irradiation. Microscopic analysis suggested that this was associated with an increase in autophagy. rhASM has been produced for the treatment of the lysosomal storage disorder, type B Niemann-Pick disease, and is currently being evaluated in a phase-1 clinical trial. Based on the data presented in this article, we propose that further investigation of this protein and gene as antineoplastic agents also is warranted.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18628757
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8999
      1. Author :
        Xing, Yifei; Lu, Xiaochun; Pua, Eric C; Zhong, Pei
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Biochemical and biophysical research communications
      6. Products :
      7. Volume :
        375
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; B16-F10-luc-G5 cells; Bioware; Cytotoxicity Tests, Immunologic; Female; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Neoplasm Metastasis; Ultrasonic Therapy
      12. Abstract :
        This study aims to assess the risk of high intensity focused ultrasound (HIFU) therapy on the incidence of distant metastases and to investigate its association with HIFU-elicited anti-tumor immunity in a murine melanoma (B16-F10) model. Tumor-bearing legs were amputated immediately after or 2 days following HIFU treatment to differentiate the contribution of the elicited anti-tumor immunity. In mice undergoing amputation immediately after mechanical, thermal, or no HIFU treatment, metastasis rates were comparable (18.8%, 13.3%, and 12.5%). In contrast, with a 2-day delay in amputation, the corresponding metastasis rates were 6.7%, 11.8%, and 40%, respectively. Animal survival rate was higher and CTL activity was enhanced in the HIFU treatment groups. Altogether, our results suggest that HIFU treatment does not increase the risk of distant metastasis. Instead, HIFU treatment can elicit an anti-tumor immune response that may be harnessed to improve the overall effectiveness and quality of cancer therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18727919
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8998
      1. Author :
        Jenkins, D. E.; Oei, Y.; Hornig, Y. S.; Yu, S. F.; Dusich, J.; Purchio, T.; Contag, P. R.
      2. Title :
        Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis
      3. Type :
        Journal Article
      4. Year :
        2003
      5. Publication :
        Clinical and Experimental Metastasis
      6. Products :
      7. Volume :
        20
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        A549-luc-C8 cells; Animals, Cell Line, Tumor, Colonic Neoplasms/pathology, Fluorouracil/therapeutic use, Humans, Image Interpretation, Computer-Assisted, Longitudinal Studies, Luciferases/diagnostic use, Luminescent Measurements, Lung Neoplasms/ secondary, Lymphatic Metastasis, Male, Mice, Mice, SCID, Mitomycin/therapeutic use, Models, Biological, Neoplasm Transplantation, Prostatic Neoplasms/drug therapy/ pathology IVIS, Xenogen
      12. Abstract :
        Bioluminescent imaging (BLI) permits sensitive in vivo detection and quantification of cells specifically engineered to emit visible light. Three stable human tumor cell lines engineered to express luciferase were assessed for their tumorigenicity in subcutaneous, intravenous and spontaneous metastasis models. Bioluminescent PC-3M-luc-C6 human prostate cancer cells were implanted subcutaneously into SCID-beige mice and were monitored for tumor growth and response to 5-FU and mitomycin C treatments. Progressive tumor development and inhibition/regression following drug treatment were observed and quantified in vivo using BLI. Imaging data correlated to standard external caliper measurements of tumor volume, but bioluminescent data permitted earlier detection of tumor growth. In a lung colonization model, bioluminescent A549-luc-C8 human lung cancer cells were injected intravenously and lung metastases were monitored in vivo by whole animal imaging. Anesthetized mice were imaged weekly allowing a temporal assessment of in vivo lung tumor growth. This longitudinal study design permitted an accurate, real-time evaluation of tumor burden in the same animals over time. End-point bioluminescence measured in vivo correlated to total lung weight at necropsy. For a spontaneous metastatic tumor model, bioluminescent HT-29-luc-D6 human colon cancer cells implanted subcutaneously produced metastases to lung and lymph nodes in SCID-beige mice. Both primary tumors and micrometastases were detected by BLI in vivo. Ex vivo imaging of excised lung lobes and lymph nodes confirmed the in vivo signals and indicated a slightly higher frequency of metastasis in some mice. Levels of bioluminescence from in vivo and ex vivo images corresponded to the frequency and size of metastatic lesions in lungs and lymph nodes as subsequently confirmed by histology. In summary, BLI provided rapid, non-invasive monitoring of tumor growth and regression in animals. Its application to traditional oncology animal models offers quantitative and sensitive analysis of tumor growth and metastasis. The ability to temporally assess tumor development and responses to drug therapies in vivo also improves upon current standard animal models that are based on single end point data.
      13. URL :
        N/A
      14. Call Number :
        139189
      15. Serial :
        5565
      1. Author :
        Cabral, Horacio; Nishiyama, Nobuhiro; Kataoka, Kazunori
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Journal of controlled release: official journal of the Controlled Release Society
      6. Products :
      7. Volume :
        121
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antineoplastic Agents; Bioware; Cell Line, Tumor; Drug Carriers; Drug Delivery Systems; Female; Hela Cells; HeLa-luc; Humans; Mice; Mice, SCID; Micelles; Neoplasms; Organoplatinum Compounds; Platinum; Polymers; Xenograft Model Antitumor Assays
      12. Abstract :
        Polymeric micelles are promising nanocarriers, which might enhance the efficacy of antitumor drugs. Herein, polymeric micelles incorporating dichloro(1,2-diamino-cyclohexane)platinum(II) (DACHPt), the oxaliplatin parent complex, were prepared through the polymer-metal complex formation of DACHPt with poly(ethylene glycol)-b-poly(glutamic acid) [PEG-b-P(Glu)] block copolymer having different lengths of the poly(glutamic acid) block [p(Glu): 20, 40, and 70 U]. The resulting micelles were studied with the aim of optimizing the system's biological performance. DACHPt-loaded micelles (DACHPt/m) were approximately 40 nm in diameter and had a narrow size distribution. In vivo biodistribution and antitumor activity experiments (CDF1 mice bearing the murine colon adenocarcinoma C-26 inoculated subcutaneously) showed 20-fold greater accumulation of DACHPt/m at the tumor site than free oxaliplatin to achieve substantially higher antitumor efficacy. Moreover, the micelles prepared from PEG-b-P(Glu) with 20 U of P(Glu) exhibited the lowest non-specific accumulation in the liver and spleen to critically reduce non-specific accumulation, resulting in higher specificity to solid tumors. The antitumor effect of DACHPt/m was also evaluated on multiple metastases generated from intraperitoneally injected bioluminescent HeLa (HeLa-Luc) cells. The in vivo bioluminescent data indicated that DACHPt/m decreased the signal 10-to 50-fold compared to the control indicating a very strong antitumor activity. These results suggest that DACHPt/m could be an outstanding drug delivery system for oxaliplatin in the treatment of solid tumors.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17628162
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9007
      1. Author :
        Cirstoiu-Hapca, A; Buchegger, F; Lange, N; Bossy, L; Gurny, R; Delie, F
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Journal of controlled release: official journal of the Controlled Release Society
      6. Products :
      7. Volume :
        144
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents, Phytogenic; Bioware; Cell Line, Tumor; Drug Carriers; Female; Humans; Mice; Nanoparticles; Ovarian Neoplasms; Paclitaxel; Receptor, erbB-2; SKOV3-luc-D3 cells; Tissue Distribution; Xenograft Model Antitumor Assays
      12. Abstract :
        The benefit of polymeric immuno-nanoparticles (NPs-Tx-HER), consisting of paclitaxel (Tx)-loaded nanoparticles coated with anti-HER2 monoclonal antibodies (Herceptin, trastuzumab), in cancer treatment was assessed in a disseminated xenograft ovarian cancer model induced by intraperitoneal inoculation of SKOV-3 cells overexpressing HER2 antigens. The study was focused on the evaluation of therapeutic efficacy and biodistribution of NPs-Tx-HER compared to other Tx formulations. The therapeutic efficacy was determined by two methods: bioluminescence imaging and survival rate. The treatment regimen consisted in an initial dose of 20mg/kg Tx administered as 10mg/kg intravenously (IV) and 10mg/kg intraperitonealy (IP), followed by five alternative IP and IV injections of 10mg/kg Tx every 3 days. The bioluminescence study has clearly shown the superior anti-tumor activity of NPs-Tx-HER compared to free Tx. As a confirmation of these results, a significantly longer survival of mice was observed for NPs-Tx-HER treatment compared to free Tx, Tx-loaded nanoparticles coated with an irrelevant mAb (Mabthera, rituximab) or Herceptin alone, indicating the potential of immuno-nanoparticles in cancer treatment. The biodistribution pattern of Tx was assessed on healthy and tumor bearing mice after IV or IP administration. An equivalent biodistribution profile was observed in healthy mice for Tx encapsulated either in uncoated nanoparticles (NPs-Tx) or in NPs-Tx-HER. No significant difference in Tx biodistribution was observed after IV or IP injection, except for a lower accumulation in the lungs when NPs were administered by IP. Encapsulated Tx accumulated in the organs of the reticulo-endothelial system (RES) such as the liver and spleen, whereas free Tx had a non-specific distribution in all tested organs. Compared to free Tx, the single dose injection (IV or IP) of encapsulated Tx in mice bearing tumors induced a higher tumor accumulation. However, no difference in overall tumor accumulation between NPs-Tx-HER and NPs-Tx was observed. In conclusion, the encapsulation of Tx into NPs-Tx-HER immuno-nanoparticles resulted in an improved efficacy of drug in the treatment of disseminated ovarian cancer overexpressing HER2 receptors.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20219607
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9012
      1. Author :
        Hunter, John J.; Neben, Tamlyn Yee; Purchio, Tony; Jenkins, Darlene
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        AACR Meeting Abstracts
      6. Products :
      7. Volume :
        2005
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; SKOV3-luc-D3 cells
      12. Abstract :
        Peritoneal dissemination is a common feature of human ovarian carcinoma. While this can be mimicked in preclinical models by intraperitoneal injection of human ovarian tumor cells into immunocompromised mice, the resulting tumor burden is difficult to monitor and quantify. Intraperitoneal tumor growth is typically evaluated indirectly by measured changes in mouse abdominal girth and body weight or, directly, by macroscopic and histological examination at the endpoint of the study. In order to establish a model system that allows continuous and accurate assessment of ovarian cancer growth and spread over time we transfected SKOV-3 cells with the firefly luciferase gene. The resulting cell line, SKOV3-luc-D3, expresses stable levels of luciferase in vitro and emits a strong luminescent signal when exposed to luciferin. Xenograft tumors established with this cell line can be tracked and quantified non-invasively by bioluminescent imaging using a highly sensitive, cooled CCD camera (IVIS(R) Imaging System, Xenogen Corp). In addition to providing a direct measure of primary tumor burden and growth, the SKOV3-luc-D3 cell line also allows for real-time evaluation of tumor response to various therapeutic agents, as well as enhanced detection of distal metastases.
      13. URL :
        http://www.aacrmeetingabstracts.org/cgi/content/abstract/2005/1/256-b
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9014
      1. Author :
        Jenkins, Darlene E.; Hornig, Yvette S.; Oei, Yoko A.; Yu, Shang-Fan; Dusich, Joan M.; Jenkins, Darlene E.; Purchio, Tony; Hornig, Yvette S.; Oei, Yoko A.; Yu, Shang-Fan; Dusich, Joan M.; Purchio, Tony
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2004
      5. Publication :
        AACR Meeting Abstracts
      6. Products :
      7. Volume :
        2004
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; MCF-7-luc-F5 cells
      12. Abstract :
        A clonal human tumor cell line expressing firefly luciferase, MCF-7-luc-F5, was developed from parental MCF-7 breast carcinoma cells and characterized for bioluminescence in vitro and in vivo. As few as twenty cells were detectable in vitro and average bioluminescence measured approximately 680 photons/sec/cell. Tumorigenesis of MCF-7-luc-F5 cells was assessed with and without estrogen supplement in vivo following injection of cells into the mammary fat pad of nude-beige mice. Continuous tumor growth was observed by weekly bioluminescent imaging in mice receiving a slow release (60 day) estrogen pellet implant (0.36 mg/pellet), while no tumor growth occurred in mice without estrogen supplement. Caliper measurements of tumor volume indicated similar results. A kinetic analysis of luciferase activity in vivo demonstrated that peak signals were evident approximately 12-15 minutes after injection of luciferin substrate and were maintained at a relatively stable level for at least another 20-25 minutes. Spontaneous metastasis from the primary mammary fat pad tumor to thoracic and axillary regions was observed in vivo in 50% of the animals. Subsequent ex vivo images and histology identified metastatic sites in lung, rib, or lymph nodes depending on the mouse. Standard drug treatment on primary and secondary tumor growth was also monitored by bioluminescent imaging.
      13. URL :
        http://www.aacrmeetingabstracts.org/cgi/content/abstract/2004/1/1179-c
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9011
      1. Author :
        Mitchell, Dianne; Pobre, Eileen G; Mulivor, Aaron W; Grinberg, Asya V; Castonguay, Roselyne; Monnell, Travis E; Solban, Nicolas; Ucran, Jeffrey A; Pearsall, R Scott; Underwood, Kathryn W; Seehra, Jasbir; Kumar, Ravindra
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Molecular cancer therapeutics
      6. Products :
      7. Volume :
        9
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Activin Receptors, Type II; Animals; Bioware; Bone Morphogenetic Proteins; CHO Cells; Cricetinae; Cricetulus; Endothelial Cells; Endothelium, Vascular; Growth Differentiation Factor 2; Humans; MCF-7-luc-F5 cells; Mice; Neoplasms; Neovascularization, Pathologic; Surface Plasmon Resonance; Telangiectasia, Hereditary Hemorrhagic
      12. Abstract :
        Activin receptor-like kinase-1 (ALK1) is a type I, endothelial cell-specific member of the transforming growth factor-beta superfamily of receptors known to play an essential role in modulating angiogenesis and vessel maintenance. In the present study, we sought to examine the angiogenic and tumorigenic effects mediated upon the inhibition of ALK1 signaling using a soluble chimeric protein (ALK1-Fc). Of 29 transforming growth factor-beta-related ligands screened by surface plasmon resonance, only bone morphogenetic protein (BMP9) and BMP10 displayed high-affinity binding to ALK1-Fc. In cell-based assays, ALK1-Fc inhibited BMP9-mediated Id-1 expression in human umbilical vein endothelial cells and inhibited cord formation by these cells on a Matrigel substrate. In a chick chorioallantoic membrane assay, ALK1-Fc reduced vascular endothelial growth factor-, fibroblast growth factor-, and BMP10-mediated vessel formation. The growth of B16 melanoma explants was also inhibited significantly by ALK1-Fc in this assay. Finally, ALK1-Fc treatment reduced tumor burden in mice receiving orthotopic grafts of MCF7 mammary adenocarcinoma cells. These data show the efficacy of chimeric ALK1-Fc proteins in mitigating vessel formation and support the view that ALK1-Fc is a powerful antiangiogenic agent capable of blocking vascularization.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20124460
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9010
      1. Author :
        Neben, Tamlyn Yee; Clermont, Anne O.; Esposito, Lin; Oei, Yoko; Neben, Tamlyn Yee; Jenkins, Darlene E.; Clermont, Anne O.; Esposito, Lin; Oei, Yoko; Jenkins, Darlene E.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        AACR Meeting Abstracts
      6. Products :
      7. Volume :
        2005
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; Lovo-6-luc-1 cells
      12. Abstract :
        Colorectal cancer is the fourth most common cancer in the United States with an estimated 130,000 new cases diagnosed each year. Many cases are asymptomatic and not diagnosed until late stage of disease. Identification of primary tumors at an earlier stage is advantageous in treatment planning and aids in decreasing the morbidity/mortality rate from recurrence. The aim of our studies is to establish a xenograft system for monitoring tumor growth and metastasis in vivo which allows continual evaluation of drug and drug regimen efficacy at all stages of tumor progression. LoVo-6-luc-1, a luciferase expressing cell line derived from LoVo human colorectal adenocarcinoma cells, was injected by various routes (subcutaneous, intraperitoneal and intracecal) into female SCID-bg mice. Tumor growth and metastatic spread was monitored weekly by in vivo imaging using the Xenogen IVISTM imaging platform. Visible bioluminescence signals were detected immediately after injection and high tumor take was seen in all of the models. In the subcutaneous model, we found a high correlation between mean bioluminescence and mean tumor volume. In the intraperitoneal and ceacum injected models, the onset of tumor spread was rapid and ex vivo imaging confirmed metastasis to multiple organs such as liver, lung, kidney, adrenal gland, spleen and ovary.
      13. URL :
        http://www.aacrmeetingabstracts.org/cgi/content/abstract/2005/1/908-d
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9016