1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

71–80 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Hanai, Koji; Takeshita, Fumitaka; Honma, Kimi; Nagahara, Shunji; Maeda, Miho; Minakuchi, Yoshiko; Sano, Akihiko; Ochiya, Takahiro
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2006
      5. Publication :
        Annals of the New York Academy of Sciences
      6. Products :
      7. Volume :
        1082
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Bone Neoplasms; Collagen; Dermatitis; Disease Models, Animal; Drug Carriers; Gene Therapy; Humans; Hypersensitivity; Mice; Mice, Nude; Nanoparticles; Neoplasm Metastasis; Oligonucleotides; PC-3M-luc; RNA, Small Interfering; Tissue Distribution
      12. Abstract :
        The goal of our research is to provide a practical platform for drug delivery in oligonucleotide therapy. We report here the efficacy of an atelocollagen-mediated oligonucleotide delivery system applied to systemic siRNA and antisense oligonucleotide treatments in animal disease models. Atelocollagen and oligonucleotides formed a complex of nanosized particles, which was highly stable against nucleases. The complex allowed oligonucleotides to be delivered efficiently into several organs and tissues via intravenous administration. In a tumor metastasis model, the complex successfully delivered siRNA to metastasized tumors in bone tissue and inhibited their growth. We also demonstrated that a single intravenous treatment of the antisense oligodeoxynucleotide complex suppressed ear dermatitis in a contact hypersensitivity model. These results indicate the strong potential of the atelocollagen-mediated drug delivery system for practical therapeutic technology.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17145919
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8976
      1. Author :
        Hickson, Jonathan
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Urologic oncology
      6. Products :
      7. Volume :
        27
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Biological Markers; Bioware; Diagnostic Imaging; Image Processing, Computer-Assisted; Luminescent Measurements; Luminescent Proteins; Molecular Probes; Optical Devices; Optical Phenomena; PC-3M-luc; Reproducibility of Results
      12. Abstract :
        There has recently been an explosion in the availability of new technologies to noninvasively detect biological processes in preclinical models. One such modality, optical imaging, comprises using bioluminescent and fluorescent reporters and probes to repetitively interrogate molecular events and monitor disease progression in animal models. This review includes an overview of optical imaging technologies (e.g., hardware, reporters, probes) available for small animal imaging and their application in monitoring disease progression, therapeutic efficacy, and molecular processes such as proliferation, apoptosis, and angiogenesis. Also discussed are some of the challenges associated with in vivo optical imaging and the necessary controls and biological correlates one must include in experimental design and interpretation for successful preclinical studies.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19414115
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8964
      1. Author :
        Hokaiwado, Naomi; Takeshita, Fumitaka; Naiki-Ito, Aya; Asamoto, Makoto; Ochiya, Takahiro; Shirai, Tomoyuki
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Carcinogenesis
      6. Products :
      7. Volume :
        29
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Androgens; Animals; Animals, Genetically Modified; Apoptosis; Bioware; Blotting, Western; Cell Line, Tumor; Cell Proliferation; Glutathione S-Transferase pi; Humans; In Situ Nick-End Labeling; Male; Neoplasm Transplantation; Oligonucleotide Array Sequence Analysis; PC-3M-luc; Prostatic Neoplasms; Rats; Reverse Transcriptase Polymerase Chain Reaction; RNA, Small Interfering
      12. Abstract :
        Prostate cancers generally acquire an androgen-independent growth capacity with progression, resulting in resistance to antiandrogen therapy. Therefore, identification of the genes regulated through this process may be important for understanding the mechanisms of prostate carcinogenesis. We here utilized androgen-dependent/independent transplantable tumors, newly established with the 'transgenic rat adenocarcinoma in prostate' (TRAP) model, to analyze their gene expression using microarrays. Among the overexpressed genes in androgen-independent prostate cancers compared with the androgen-dependent tumors, glutathione S-transferase pi (GST-pi) was included. In line with this, human prostate cancer cell lines PC3 and DU145 (androgen independent) had higher expression of GST-pi compared with LNCaP (androgen dependent) as determined by semiquantitative reverse transcription-polymerase chain reaction analysis. To investigate the roles of GST-pi expression in androgen-independent human prostate cancers, GST-pi was knocked down by a small interfering RNA (siRNA), resulting in significant decrease of the proliferation rate in the androgen-independent PC3 cell line. In vivo, administration of GST-pi siRNA-atelocollagen complex decreased GST-pi protein expression, resulting in enhanced numbers of TdT mediated dUTP-biotin nick-end labering (TUNEL)-positive apoptotic cells. These findings suggest that GST-pi might play important roles in proliferation of androgen-independent human prostate cancer cells.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18413363
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8967
      1. Author :
        Jenkins, Darlene E; Oei, Yoko; Hornig, Yvette S; Yu, Shang-Fan; Dusich, Joan; Purchio, Tony; Contag, Pamela R
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2003
      5. Publication :
        Clinical & experimental metastasis
      6. Products :
      7. Volume :
        20
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        A549-luc-C8; Animals; Bioware; Cell Line, Tumor; Colonic Neoplasms; Fluorouracil; HT-29-luc-D6 cells; Humans; Image Interpretation, Computer-Assisted; Longitudinal Studies; Luciferases; Luminescent Measurements; Lung Neoplasms; Lymphatic Metastasis; Male; Mice; Mice, SCID; Mitomycin; Models, Biological; Neoplasm Transplantation; PC-3M-luc; Prostatic Neoplasms
      12. Abstract :
        Bioluminescent imaging (BLI) permits sensitive in vivo detection and quantification of cells specifically engineered to emit visible light. Three stable human tumor cell lines engineered to express luciferase were assessed for their tumorigenicity in subcutaneous, intravenous and spontaneous metastasis models. Bioluminescent PC-3M-luc-C6 human prostate cancer cells were implanted subcutaneously into SCID-beige mice and were monitored for tumor growth and response to 5-FU and mitomycin C treatments. Progressive tumor development and inhibition/regression following drug treatment were observed and quantified in vivo using BLI. Imaging data correlated to standard external caliper measurements of tumor volume, but bioluminescent data permitted earlier detection of tumor growth. In a lung colonization model, bioluminescent A549-luc-C8 human lung cancer cells were injected intravenously and lung metastases were monitored in vivo by whole animal imaging. Anesthetized mice were imaged weekly allowing a temporal assessment of in vivo lung tumor growth. This longitudinal study design permitted an accurate, real-time evaluation of tumor burden in the same animals over time. End-point bioluminescence measured in vivo correlated to total lung weight at necropsy. For a spontaneous metastatic tumor model, bioluminescent HT-29-luc-D6 human colon cancer cells implanted subcutaneously produced metastases to lung and lymph nodes in SCID-beige mice. Both primary tumors and micrometastases were detected by BLI in vivo. Ex vivo imaging of excised lung lobes and lymph nodes confirmed the in vivo signals and indicated a slightly higher frequency of metastasis in some mice. Levels of bioluminescence from in vivo and ex vivo images corresponded to the frequency and size of metastatic lesions in lungs and lymph nodes as subsequently confirmed by histology. In summary, BLI provided rapid, non-invasive monitoring of tumor growth and regression in animals. Its application to traditional oncology animal models offers quantitative and sensitive analysis of tumor growth and metastasis. The ability to temporally assess tumor development and responses to drug therapies in vivo also improves upon current standard animal models that are based on single end point data.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/14713107
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8980
      1. Author :
        Jenkins, Darlene E; Yu, Shang-Fan; Hornig, Yvette S; Purchio, Tony; Contag, Pamela R
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2003
      5. Publication :
        Clinical & experimental metastasis
      6. Products :
      7. Volume :
        20
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antineoplastic Agents; Bioware; Cell Line, Tumor; Disease Models, Animal; Heart Neoplasms; Humans; Injections, Subcutaneous; Luminescent Measurements; Lung Neoplasms; Lymphatic Metastasis; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Recurrence, Local; PC-3M-luc; Prostatic Neoplasms
      12. Abstract :
        We used the bioluminescent human prostate carcinoma cell line PC-3M-luc-C6 to non-invasively monitor in vivo growth and response of tumors and metastasis before, during and after treatments. Our goal was to determine the utility of a luciferase-based prostate cancer animal model to specifically assess tumor and metastatic recurrence in vivo following chemotherapy. Bioluminescent PC-3M-luc-C6 cells, constitutively expressing luciferase, were implanted into the prostate or under the skin of mice for primary tumor assessment. Cells were also injected into the left ventricle of the heart as an experimental metastasis model. Weekly serial in vivo images were taken of anesthetized mice that were untreated or treated with 5-fluorouracil or mitomycin C. Ex vivo imaging and/or histology was used to confirm and localize metastatic lesions in various tissues initially detected by images in vivo. Our in vivo data detected and quantified early inhibition of subcutaneous and orthotopic prostate tumors in mice as well as significant tumor regrowth post-treatment. Local and distal metastasis was observed within seven days following intracardiac injection of PC-3M-luc-C6 cells. Differential drug responses and metastatic tumor relapse patterns were distinguished over time by in vivo imaging depending on the metastatic site. The longitudinal evaluation of bioluminescent tumor and metastatic development within the same cohorts of animals permitted sensitive and quantitative assessment of both primary and metastatic prostate tumor response and recurrence in vivo.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/14713108
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8981
      1. Author :
        Korotcov, Alexandru; Shan, Liang; Meng, Huan; Wang, Tongxin; Sridhar, Rajagopalan; Zhao, Yuliang; Liang, Xing-Jie; Wang, Paul C
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Journal of nanoscience and nanotechnology
      6. Products :
      7. Volume :
        10
      8. Issue :
        11
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Contrast Media; Magnetic Resonance Imaging; Mice; Nanotechnology; PC-3M-luc
      12. Abstract :
        We have developed and tested a liposomal nanocomplex system, which contains Gd-DTPA as a payload and transferrin on the surface, as a tumor specific targeting MRI contrast agent for studying prostate cancer tumors in mice. In vivo, the probe significantly enhanced the MRI signal. The image contrast between the peripheral region of the tumor and the non-involved muscle was nearly 50% higher two hours after administration of the nanocomplex. The liposomal nanocomplex increased the amount of Gd accumulated in tumors by factor 2.8 compared to that accumulated by using Magnevist alone. Moreover, the heterogeneous MRI image features correlate well with the tumor pathology. The image enhancement patterns can be used for cancer prognosis and non-invasive monitoring of the response to therapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21137979
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8963
      1. Author :
        Kuo, Chaincy; Coquoz, Olivier; Troy, Tamara L; Xu, Heng; Rice, Brad W
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Journal of biomedical optics
      6. Products :
      7. Volume :
        12
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Luminescent Proteins; Male; Mice; Microscopy, Fluorescence, Multiphoton; PC-3M-luc; Prostatic Neoplasms; Whole Body Imaging
      12. Abstract :
        A new method is described for obtaining a 3-D reconstruction of a bioluminescent light source distribution inside a living animal subject, from multispectral images of the surface light emission acquired on charge-coupled device (CCD) camera. The method uses the 3-D surface topography of the animal, which is obtained from a structured light illumination technique. The forward model of photon transport is based on the diffusion approximation in homogeneous tissue with a local planar boundary approximation for each mesh element, allowing rapid calculation of the forward Green's function kernel. Absorption and scattering properties of tissue are measured a priori as input to the algorithm. By using multispectral images, 3-D reconstructions of luminescent sources can be derived from images acquired from only a single view. As a demonstration, the reconstruction technique is applied to determine the location and brightness of a source embedded in a homogeneous phantom subject in the shape of a mouse. The technique is then evaluated with real mouse models in which calibrated sources are implanted at known locations within living tissue. Finally, reconstructions are demonstrated in a PC3M-luc (prostate tumor line) metastatic tumor model in nude mice.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17477722
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8968
      1. Author :
        Lyons, Scott K; Lim, Ed; Clermont, Anne O; Dusich, Joan; Zhu, Lingyun; Campbell, Kenneth D; Coffee, Richard J; Grass, David S; Hunter, John; Purchio, Tony; Jenkins, Darlene
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2006
      5. Publication :
        Cancer research
      6. Products :
      7. Volume :
        66
      8. Issue :
        9
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Androgens; Animals; Bioware; Cell Transformation, Neoplastic; Disease Models, Animal; Genes, Reporter; Humans; Image Processing, Computer-Assisted; In Situ Hybridization; Luciferases, Firefly; Luminescent Measurements; Male; Mice; Mice, Transgenic; PC-3M-luc; Promoter Regions, Genetic; Prostate; Prostate-Specific Antigen; Prostatic Neoplasms
      12. Abstract :
        Several transgenic mouse models of prostate cancer have been developed recently that are able to recapitulate many key biological features of the human condition. It would, therefore, be desirable to employ these models to test the efficacy of new therapeutics before clinical trial; however, the variable onset and non-visible nature of prostate tumor development limit their use for such applications. We now report the generation of a transgenic reporter mouse that should obviate these limitations by enabling noninvasive in vivo bioluminescence imaging of normal and spontaneously transformed prostate tissue in the mouse. We used an 11-kb fragment of the human prostate-specific antigen (PSA) promoter to achieve specific and robust expression of firefly luciferase in the prostate glands of transgenic mice. Ex vivo bioluminescence imaging and in situ hybridization analysis confirmed that luciferase expression was restricted to the epithelium in all four lobes of the prostate. We also show that PSA-Luc mice exhibit decreased but readily detectable levels of in vivo bioluminescence over extended time periods following androgen ablation. These results suggest that this reporter should enable in vivo imaging of both androgen-dependent and androgen-independent prostate tumor models. As proof-of-principle, we show that we could noninvasively image SV40 T antigen-induced prostate tumorigenesis in mice with PSA-Luc. Furthermore, we show that our noninvasive imaging strategy can be successfully used to image tumor response to androgen ablation in transgenic mice and, as a result, that we can rapidly identify individual animals capable of sustaining tumor growth in the absence of androgen.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/16651422
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8975
      1. Author :
        Okuda, Tomoyuki; Kawaguchi, Yasuhisa; Okamoto, Hirokazu
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Current topics in medicinal chemistry
      6. Products :
      7. Volume :
        9
      8. Issue :
        12
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bioware; Gene Silencing; PC-3M-luc; Peptides; Proteins; RNA Interference; Transfection
      12. Abstract :
        RNA interference (RNAi) is an attractive phenomenon for practical use that specifically inhibits gene expression and is carried out by small double-stranded RNAs (dsRNAs) including small interfering RNA (siRNA) or short hairpin RNA (shRNA). In addition, RNAi is of great interest for clinical use to cure refractory diseases related to the expression of a specific gene. To achieve gene silencing in the body, a sufficient amount of dsRNA must be delivered and internalized into target cells. However, dsRNAs have a large molecular weight and net negative charge, which limits their membrane-permeating ability. Moreover, dsRNAs are rapidly degraded by endonucleses in the body. Therefore, for the efficient delivery of dsRNAs, many approaches based on drug delivery systems have been carried out. In this review, we focus on recent reports about the application of functional peptides and proteins designed for the efficient delivery of dsRNAs.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19860710
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8962
      1. Author :
        Priddle, Helen; Grabowska, Anna; Morris, Teresa; Clarke, Philip A; McKenzie, Andrew J; Sottile, Virginie; Denning, Chris; Young, Lorraine; Watson, Sue
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Cloning and stem cells
      6. Products :
      7. Volume :
        11
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Cell Differentiation; Chick Embryo; Embryonic Stem Cells; Fluorescent Dyes; Humans; Luciferases; Luminescent Measurements; Mice; Mice, SCID; PC-3M-luc; Software; Stem Cell Transplantation; Teratoma
      12. Abstract :
        Research into the behavior, efficacy, and biosafety of stem cells with a view to clinical transplantation requires the development of noninvasive methods for in vivo imaging of cells transplanted into animal models. This is particularly relevant for human embryonic stem cells (hESCs), because transplantation of undifferentiated hESCs leads to tumor formation. The present study aimed to monitor hESCs in real time when injected in vivo. hESCs were stably transfected to express luciferase, and luciferase expression was clearly detected in the undifferentiated and differentiated state. When transfected hESCs were injected into chick embryos, bioluminescence could be detected both ex and in ovo. In the SCID mouse model, undifferentiated hESCs were detectable after injection either into the muscle layer of the peritoneum or the kidney capsule. Tumors became detectable between days 10-30, with approximately a 3 log increase in the luminescence signal by day 75. The growth phase occurred earlier in the kidney capsule and then reached a plateau, whilst tumors in the peritoneal wall grew steadily throughout the period analysed. These results show the widespread utility of bioluminescent for in vivo imaging of hESCs in a variety of model systems for preclinical research into regenerative medicine and cancer biology.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19522673
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8961
Back to Search
Select All  |  Deselect All