1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

441–450 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Kozloff KM, Volakis LI, Marini JC and Caird MS
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Journal of Bone and Mineral Research
      6. Products :
      7. Volume :
        25
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        Physiology
      11. Keywords :
        FMT; bone; OsteoSense; FRFP; in vivo imaging
      12. Abstract :
        Bisphosphonate use has expanded beyond traditional applications to include treatment of a variety of low-bone-mass conditions. Complications associated with long-term bisphosphonate treatment have been noted, generating a critical need for information describing the local bisphosphonate-cell interactions responsible for these observations. This study demonstrates that a fluorescent bisphosphonate analogue, far-red fluorescent pamidronate (FRFP), is an accurate biomarker of bisphosphonate deposition and retention in vivo and can be used to monitor site-specific local drug concentration. In vitro, FRFP is competitively inhibited from the surface of homogenized rat cortical bone by traditional bisphosphonates. In vivo, FRFP delivery to the skeleton is rapid, with fluorescence linearly correlated with bone surface area. Limb fluorescence increases linearly with injected dose of FRFP; injected FRFP does not interfere with binding of standard bisphosphonates at the doses used in this study. Long-term FRFP retention studies demonstrated that FRFP fluorescence decreases in conditions of normal bone turnover, whereas fluorescence was retained in conditions of reduced bone turnover, demonstrating preservation of local FRFP concentration. In the mandible, FRFP localized to the alveolar bone and bone surrounding the periodontal ligament and molar roots, consistent with findings of osteonecrosis of the jaw. These findings support a role for FRFP as an effective in vivo marker for bisphosphonate site-specific deposition, turnover, and long-term retention in the skeleton.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20200982
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4527
      1. Author :
        Stangenberg L, Ellson C, Cortez-Retamozo V, Ortiz-Lopez A, Yuan H, Blois J, Smith RA, Yaffe MB, Weissleder R, Benoist C, Mathis D, Josephson L and Mahmood U
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Arthritis and Rheumatism
      6. Products :
      7. Volume :
        60
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        Physiology
      11. Keywords :
        ProSense; AngioSense; arthritis; in vivo imaging
      12. Abstract :
        OBJECTIVE: To test a novel self-activating viridin (SAV) prodrug that slowly releases wortmannin, a potent phosphoinositide 3-kinase inhibitor, in a model of antibody-mediated inflammatory arthritis.

        METHODS: The SAV prodrug was administered to K/BxN mice or to C57BL/6 (B6) mice that had been injected with K/BxN serum. Ankle thickness was measured, and histologic changes were scored after a 10-day disease course (serum-transfer arthritis). Protease activity was measured by a near-infrared imaging approach using a cleavable cathepsin-selective probe. Further near-infrared imaging techniques were used to analyze early changes in vascular permeability after serum injection, as well as neutrophil-endothelial cell interactions. Neutrophil functions were assessed using an oxidative burst assay as well as a degranulation assay.

        RESULTS: SAV prevented ankle swelling in mice with serum-transfer arthritis in a dose-dependent manner. It also markedly reduced the extent of other features of arthritis, such as protease activity and histology scores for inflammation and joint erosion. Moreover, SAV was an effective therapeutic agent. The underlying mechanisms for the antiinflammatory activity were manifold. Endothelial permeability after serum injection was reduced, as was firm neutrophil attachment to endothelial cells. Endothelial cell activation by tumor necrosis factor alpha was impeded by SAV, as measured by the expression of vascular cell adhesion molecule. Crucial neutrophil functions, such as generation of reactive oxygen species and degranulation of protease-laden vesicles, were decreased by SAV administration.

        CONCLUSION: A novel SAV prodrug proved strongly antiinflammatory in a murine model of antibody-induced inflammatory arthritis. Its activity could be attributed, at least in part, to the inhibition of neutrophil and endothelial cell functions.
      13. URL :
        http://onlinelibrary.wiley.com/doi/10.1002/art.24704/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4528
      1. Author :
        Kenneth M Kozloff, Ralph Weissleder and Umar Mahmood
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Journal of Bone and Mineral Research
      6. Products :
      7. Volume :
        22
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        Physiology
      11. Keywords :
        FMT; OsteoSense; ProSense bone mineralization; bone turnover markers; molecular imaging; bisphosphonates; in vivo imaging
      12. Abstract :
        Abstract: FRFP binds to mineral at osteoblastic, osteoclastic, and quiescent surfaces, with accumulation likely modulated by vascular delivery. In vivo visualization and quantification of binding can be accomplished noninvasively in animal models through optical tomographic imaging.

        Introduction: The development of near-infrared optical markers as reporters of bone metabolism will be useful for early diagnosis of disease. Bisphosphonates bind differentially to osteoblastic and osteoclastic surfaces depending on choice of side-chain and dose, and fluorescently tagged bisphosphonates provide a convenient way to visualize these sites. This study examines the ability of a fluorescently labeled pamidronate imaging probe to bind to regions of bone formation and resorption in vivo.

        Materials and Methods: In vitro binding of a far-red fluorescent pamidronate (FRFP) to mineral was assessed using intact and demineralized dentine slices. In vivo, FRFP binding was studied in three models: developing neonatal mouse, bone healing after injury, and metastasis-induced osteolysis and fracture. 3D fluorescence molecular tomographic (FMT) imaging was used to visualize signal deep within the body.

        Results: FRFP binding to bone depends on the quantity of mineral present and can be liberated from the bone during decalcification. In vivo, FRFP binds to surfaces of actively forming bone, as assessed by alkaline phosphatase staining, surfaces undergoing active resorption, as noted by scalloped bone border and presence of osteoclasts, and to quiescent surfaces not involved in formation or resorption. Binding is likely modulated by vascular delivery of the imaging agent to the exposed mineral surface and total quantity of surface exposed.FMT imaging is capable of visualizing regions of bone formation because of a large volume of labeled surface, but like radiolabeled bone scans, cannot discriminate pure osteolysis caused by metastasis.

        Conclusions: FRFP may function as a local biomarker of bisphosphonate deposition to assess interplay between drug and cellular environment or may be combined with other imaging agents or fluorescent cells for the noninvasive assessment of local bone metabolism in vivo.
      13. URL :
        http://onlinelibrary.wiley.com/doi/10.1359/jbmr.070504/references?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nat%20Med&rft.atitle=Shedding%20light%20onto%20live%20molecular%20targets&rft.volume=9&rf
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4530
      1. Author :
        Katharina Jannasch, Jeannine Missbach-Guentner and Frauke Alves
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        N/A
      5. Publication :
        Drug Discovery Today: Disease Models
      6. Products :
      7. Volume :
        6
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        Drug Discovery
      11. Keywords :
        FMT; ProSense; in vivo imaging
      12. Abstract :
        The incidence of asthma is increasing throughout the world. Animal models are crucial for understanding the pathophysiology of asthma and for developing new therapies. Novel imaging approaches will be a powerful tool for studying asthma in animal models. This review will give a short overview of different imaging techniques that are currently used and will focus on new developments in visualization of asthma that might be used in animals as well as being translated to humans.
      13. URL :
        http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B75D8-4Y5GVHG-1&_user=10&_coverDate=02%2F28%2F2010&_rdoc=1&_fmt=high&_orig=browse&_origin=browse&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=58c3195065086c72b7aa74f13df11
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4533
      1. Author :
        Vasilis Ntziachristos
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        The Proceedings of the American Thoracic Society
      6. Products :
      7. Volume :
        6
      8. Issue :
        5
      9. Page Numbers :
        N/A
      10. Research Area :
        Physiology
      11. Keywords :
        ProSense; FMT; fluorescence; tomography; proteases; lung; inflammation; in vivo imaging
      12. Abstract :
        Biomedical imaging has become an important tool in the study of “-omics” fields by allowing the noninvasive visualization of functional and molecular events using in vivo staining and reporter gene approaches. This capacity can go beyond the understanding of the genetic basis and phenotype of such respiratory conditions as acute bronchitis, adult respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and asthma and investigate the development of disease and of therapeutic events longitudinally and in unperturbed environments. Herein, we show how the application of novel quantitative optical imaging methods, using transillumination and fluorescence molecular tomography (FMT), can allow visualization of pulmonary inflammation in small animals in vivo. The results confirm prior observations using a protease-sensitive probe. We discuss how this approach enables in vivo insights at the system level as to the dynamic role of proteases in respiratory pathophysiology and their potential as therapeutic targets. Overall, the proposed imaging method can be used with a significantly wider range of possible targets and applications in lung imaging.
      13. URL :
        http://pats.atsjournals.org/cgi/content/full/6/5/416
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4534
      1. Author :
        Rosenzweig HL, Jann MM, Glant TT, Martin TM, Planck SR, van Eden W, van Kooten PJ, Flavell RA, Kobayashi KS, Rosenbaum JT and Davey MP
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Journal of Leukocyte Biology
      6. Products :
      7. Volume :
        85
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        Physiology
      11. Keywords :
        ProSense; in vivo imaging; NOD2; mice; inflammatory arthritis; TCR transgenic; knockout
      12. Abstract :
        In addition to its role in innate immunity, nucleotide oligomerization domain 2 (NOD2) has been shown to play a suppressive role in models of colitis. Notably, mutations in NOD2 cause the inherited granulomatous disease of the joints called Blau syndrome, thereby linking NOD2 with joint disease as well. However, the role of NOD2 in joint inflammation has not been clarified. We demonstrate here that NOD2 is functional within the mouse joint and promotes inflammation, as locally or systemically administered muramyl dipeptide (MDP; the NOD2 agonist) resulted in significant joint inflammation that was abolished in NOD2-deficient mice. We then sought to investigate the role of NOD2 in a mouse model of inflammatory arthritis dependent on adaptive immunity using TCR-transgenic mice whose T cells recognized the dominant epitope of proteoglycan (PG). Mice immunized with PG in the presence of MDP developed a more severe inflammatory arthritis and histopathology within the joints. Antigen-specific activation of splenocytes was enhanced by MDP with respect to IFN-gamma production, which would be consistent with the Th1-mediated disease in vivo. Intriguingly, NOD2 deficiency did not alter the PG-induced arthritis, indicating that NOD2 does not play an essential role in this model of joint disease when it is not activated by MDP. In conclusion, we demonstrate that in a model of inflammatory arthritis dependent on T and B cell priming, NOD2 activation potentiates disease. However, the absence of NOD2 does not alter the course of inflammatory arthritis, in contrast to models of intestinal inflammation.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718807/?tool=pubmed
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4535
      1. Author :
        Virna Cortez-Retamozo, Filip K. Swirski, Peter Waterman, Hushan Yuan, Jose Luiz Figueiredo, Andita P. Newton, Rabi Upadhyay, Claudio Vinegoni, Rainer Kohler, Joseph Blois, Adam Smith, Matthias Nahrendorf, Lee Josephson, Ralph Weissleder and Mikael J. Pittet
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Journal of Clinical Investigation
      6. Products :
      7. Volume :
        118
      8. Issue :
        12
      9. Page Numbers :
        N/A
      10. Research Area :
        Physiology
      11. Keywords :
        FMT; in vivo imaging; ProSense; MMPSense
      12. Abstract :
        Eosinophils are multifunctional leukocytes that degrade and remodel tissue extracellular matrix through production of proteolytic enzymes, release of proinflammatory factors to initiate and propagate inflammatory responses, and direct activation of mucus secretion and smooth muscle cell constriction. Thus, eosinophils are central effector cells during allergic airway inflammation and an important clinical therapeutic target. Here we describe the use of an injectable MMP-targeted optical sensor that specifically and quantitatively resolves eosinophil activity in the lungs of mice with experimental allergic airway inflammation. Through the use of real-time molecular imaging methods, we report the visualization of eosinophil responses in vivo and at different scales. Eosinophil responses were seen at single-cell resolution in conducting airways using near-infrared fluorescence fiberoptic bronchoscopy, in lung parenchyma using intravital microscopy, and in the whole body using fluorescence-mediated molecular tomography. Using these real-time imaging methods, we confirmed the immunosuppressive effects of the glucocorticoid drug dexamethasone in the mouse model of allergic airway inflammation and identified a viridin-derived prodrug that potently inhibited the accumulation and enzyme activity of eosinophils in the lungs. The combination of sensitive enzyme-targeted sensors with noninvasive molecular imaging approaches permitted evaluation of airway inflammation severity and was used as a model to rapidly screen for new drug effects. Both fluorescence-mediated tomography and fiberoptic bronchoscopy techniques have the potential to be translated into the clinic.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2579705/?tool=pubmed
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4536
Back to Search
Select All  |  Deselect All