1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

151–160 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Ohlsen, Knut; Lorenz, Udo
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Future microbiology
      6. Products :
      7. Volume :
        2
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Anti-Bacterial Agents; Bioware; Community-Acquired Infections; Humans; Methicillin Resistance; Staphylococcal Infections; Staphylococcus aureus; Xen29
      12. Abstract :
        Multiple resistant staphylococci that cause significant morbidity and mortality are the leading cause of nosocomial infections. Meanwhile, methicillin-resistant Staphylococcus aureus (MRSA) also spreads in the community, where highly virulent strains infect children and young adults who have no predisposing risk factors. Although some treatment options remain, the search for new antibacterial targets and lead compounds is urgently required to ensure that staphylococcal infections can be effectively treated in the future. Promising targets for new antibacterials are gene products that are involved in essential cell functions. In addition to antibacterials, active and passive immunization strategies are being developed that target surface components of staphylococci such as cell wall-linked adhesins, teichoic acids and capsule or immunodominant antigens.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18041906
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9049
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Acta biomaterialia
      6. Products :
      7. Volume :
        6
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Bacterial Adhesion; Biocompatible Materials; Biofilms; Bioware; Coated Materials, Biocompatible; Materials Testing; Polyethylene Glycols; Staphylococcus aureus; Staphylococcus epidermidis; Surface Properties; Xen29
      12. Abstract :
        Poly(ethylene glycol) (PEG) coatings are known to reduce microbial adhesion in terms of numbers and binding strength. However, bacterial adhesion remains of the order of 10(4)cm(-2). It is unknown whether this density of bacteria will eventually grow into a biofilm. This study investigates the kinetics of staphylococcal biofilm formation on a commercially produced, robust, cross-linked PEG-based polymer coating (OptiChem) in vitro and in vivo. OptiChem inhibits biofilm formation in vitro, and although adsorption of plasma proteins encourages biofilm formation, microbial growth kinetics are still strongly delayed compared to uncoated glass. In vivo, OptiChem-coated and bare silicone rubber samples were inserted into an infected murine subcutaneous pocket model. In contrast to bare silicone rubber, OptiChem samples did not become colonized upon reimplantation despite the fact that surrounding tissues were always culture-positive. We conclude that the commercial OptiChem coating considerably slows down bacterial biofilm formation both in vitro and in vivo, making it an attractive candidate for biomaterials implant coating.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19733265
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9041
      1. Author :
        Sjollema, Jelmer; Sharma, Prashant K; Dijkstra, Rene J B; van Dam, Gooitzen M; van der Mei, Henny C; Engelsman, Anton F; Busscher, Henk J
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Biomaterials
      6. Products :
      7. Volume :
        31
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Infective Agents; Bacteria; Bacterial Infections; Biocompatible Materials; Biofilms; Bioware; Coated Materials, Biocompatible; Fluorescent Dyes; Humans; Image Enhancement; Light; Luminescent Measurements; Luminescent Proteins; Microscopy, Fluorescence; Prosthesis-Related Infections; Sensitivity and Specificity; Xen29
      12. Abstract :
        This review presents the current state of Bioluminescence and Fluorescent Imaging technologies (BLI and FLI) as applied to Biomaterial-Associated Infections (BAI). BLI offers the opportunity to observe the in vivo course of BAI in small animals without the need to sacrifice animals at different time points after the onset of infection. BLI is highly dependent on the bacterial cell metabolism which makes BLI a strong reporter of viable bacterial presence. Fluorescent sources are generally more stable than bioluminescent ones and specifically targeted, which renders the combination of BLI and FLI a promising tool for imaging BAI. The sensitivity and spatial resolution of both imaging tools are, however, dependent on the imaging system used and the tissue characteristics, which makes the interpretation of images, in terms of the location and shape of the illuminating source, difficult. Tomographic reconstruction of the luminescent source is possible in the most modern instruments, enabling exact localization of a colonized implant material, spreading of infecting organisms in surrounding tissue and immunological tissue reactions. BLI studies on BAI have successfully distinguished between different biomaterials with respect to the development and clearance of BAI in vivo, simultaneously reducing animal use and experimental variation. It is anticipated that bio-optical imaging will become an indispensable technology for the in vivo evaluation of antimicrobial coatings.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19969345
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9038
      1. Author :
        Yu, Jun; Wu, Jenny; Francis, Kevin P; Purchio, Tony F; Kadurugamuwa, Jagath L
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2005
      5. Publication :
        The Journal of antimicrobial chemotherapy
      6. Products :
      7. Volume :
        55
      8. Issue :
        4
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Bacterial Agents; Biofilms; Bioware; Drug Resistance, Bacterial; Mice; Mutation; Rifampin; Staphylococcus aureus; Xen29
      12. Abstract :
        OBJECTIVES To investigate in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm model using bioluminescence imaging. MATERIALS AND METHODS S. aureus was engineered with a luciferase operon to emit bioluminescence that can be detected in vivo using an IVIS imaging system. Two rifampicin-resistant strains of S. aureus that were previously isolated from animals undergoing rifampicin treatment, S464P (resistant to low concentrations of rifampicin) and H481Y (resistant to high concentrations of rifampicin), were characterized and then compared with their parental strain for in vivo fitness to form biofilm infections in the absence of rifampicin. RESULTS The mutant S464P showed better adaptation to in vivo growth than either the parental strain or H481Y without selective pressure. Six days after implanting pre-colonized catheters, bioluminescent signals were seen from 100% of the catheters coated by the mutant S464P. In comparison, only 83% and 61% of the catheters coated by the parental strain and H481Y, respectively, maintained a signal in vivo. Rifampicin treatment of S464P biofilms in vivo resulted in a slight decline, but earlier rebound in bioluminescence from these catheters compared with the parental signal, whereas rifampicin had no affect on bioluminescence in mice infected with mutant H481Y. CONCLUSIONS The mutant with low-level rifampicin resistance appears to be better adapted to in vivo growth than the mutant that has high-level rifampicin resistance. Moreover, the former mutant may actually have a slight competitive advantage over the rifampicin-susceptible strain (parental), raising awareness for the occurrence of such strains in clinical environments.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15743898
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9055
      1. Author :
        Ketonis, Constantinos; Barr, Stephanie; Adams, Christopher S; Hickok, Noreen J; Parvizi, Javad
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Clinical orthopaedics and related research
      6. Products :
      7. Volume :
        468
      8. Issue :
        8
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Anti-Bacterial Agents; Biofilms; Bioware; Bone Substitutes; Bone Transplantation; Prostheses and Implants; Prosthesis-Related Infections; Staphylococcal Infections; Staphylococcus aureus; Transplantation, Homologous; Vancomycin; Xen36
      12. Abstract :
        BACKGROUND Bone grafts are frequently used to supplement bone stock and to establish structural stability. However, graft-associated infection represents a challenging complication leading to increased patient morbidity and healthcare costs. QUESTIONS/PURPOSES We therefore designed this study to (1) determine if increasing initial S. aureus inoculation of bone allograft results in a proportionate increase in colonization; (2) assess if antibiotics decrease colonization and if antibiotic tethering to allograft alters its ability to prevent bacterial colonization; and (3) determine if covalent modification alters the allograft topography or its biological properties. METHODS Allograft bone and vancomycin-modified bone (VAN-bone) was challenged with different doses of S. aureus for times out to 24 hours in the presence or absence of solution vancomycin. Bacterial colonization was assessed by fluorescence, scanning electron microscopy (SEM), and by direct colony counting. Cell density and distribution of osteoblast-like cells on control and modified allograft were then compared. RESULTS Bacterial attachment was apparent within 6 hours with colonization and biofilm formation increasing with time and dose. Solution vancomycin failed to prevent bacterial attachment whereas VAN-bone successfully resisted colonization. The allograft modification did not affect the attachment and distribution of osteoblast-like cells. CONCLUSIONS Allograft bone was readily colonized by S. aureus and covered by a biofilm with especially florid growth in natural topographic niches. Using a novel covalent modification, allograft bone was able to resist colonization by organisms while retaining the ability to allow adhesion of osteoblastic cells. CLINICAL RELEVANCE Generation of allograft bone that can resist infection in vivo would be important in addressing one of the most challenging problems associated with the use of allograft, namely infection.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20361282
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9981
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Journal of immunology (Baltimore, Md.: 1950)
      6. Products :
      7. Volume :
        179
      8. Issue :
        9
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Amine Oxidase (Copper-Containing); Animals; Bacterial Adhesion; Bioware; Cell Adhesion Molecules; Coxsackievirus Infections; Immunity, Mucosal; Immunoglobulin A; Lymphocyte Count; Lymphocytes; Lymphoid Tissue; Mice; Mice, Inbred C57BL; Mice, Knockout; Peyer's Patches; Receptors, Lymphocyte Homing; Staphylococcal Vaccines; Staphylococcus aureus; Xen36
      12. Abstract :
        VAP-1, an ecto-enzyme expressed on the surface of endothelial cells, is involved in leukocyte trafficking between the blood and tissues under physiological and pathological conditions. In this study, we used VAP-1-deficient mice to elucidate whether absence of VAP-1 alters the immune system under normal conditions and upon immunization and microbial challenge. We found that VAP-1-deficient mice display age-dependent paucity of lymphocytes, in the Peyer's patches of the gut. IgA concentration in serum was also found to be lower in VAP-1(-/-) animals than in wild-type mice. Although there were slightly less CD11a on B and T cells isolated from VAP-1-deficient mice than on those from wild-type mice, there were no differences in the expression of gut-homing-associated adhesion molecules or chemokine receptors. Because anti-VAP-1 therapies are being developed for clinical use to treat inflammation, we determined the effect of VAP-1 deletion on useful immune responses. Oral immunization with OVA showed defective T and B cell responses in VAP-1-deficient mice. Antimicrobial immune responses against Staphylococcus aureus and coxsackie B4 virus were also affected by the absence of VAP-1. Importantly, when the function of VAP-1 was acutely neutralized using small molecule enzyme inhibitors and anti-VAP-1 Abs rather than by gene deletion, no significant impairment in antimicrobial control was detected. In conclusion, VAP-1-deficient mice have mild deviations in the mucosal immune system and therapeutic targeting of VAP-1 does not appear to cause a generalized increase in the risk of infection.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17947691
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9984
      1. Author :
        Li, Min; Rigby, Kevin; Lai, Yuping; Nair, Vinod; Peschel, Andreas; Schittek, Birgit; Otto, Michael
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Antimicrobial agents and chemotherapy
      6. Products :
      7. Volume :
        53
      8. Issue :
        10
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Anti-Bacterial Agents; Bioware; Blotting, Southern; Chromatography, Thin Layer; Computational Biology; Cytochromes c; Genetic Complementation Test; Humans; Microscopy, Electron, Scanning; Microscopy, Immunoelectron; Mutagenesis; Peptides; Phospholipids; Polymerase Chain Reaction; Staphylococcus aureus; Xen36
      12. Abstract :
        Antimicrobial peptides (AMPs) form an important part of the innate host defense. In contrast to most AMPs, human dermcidin has an anionic net charge. To investigate whether bacteria have developed specific mechanisms of resistance to dermcidin, we screened for mutants of the leading human pathogen, Staphylococcus aureus, with altered resistance to dermcidin. To that end, we constructed a plasmid for use in mariner-based transposon mutagenesis and developed a high-throughput cell viability screening method based on luminescence. In a large screen, we did not find mutants with strongly increased susceptibility to dermcidin, indicating that S. aureus has no specific mechanism of resistance to this AMP. Furthermore, we detected a mutation in a gene of unknown function that resulted in significantly increased resistance to dermcidin. The mutant strain had an altered membrane phospholipid pattern and showed decreased binding of dermcidin to the bacterial surface, indicating that dermcidin interacts with membrane phospholipids. The mode of this interaction was direct, as shown by assays of dermcidin binding to phospholipid preparations, and specific, as the resistance to other AMPs was not affected. Our findings indicate that dermcidin has an exceptional value for the human innate host defense and lend support to the idea that it evolved to evade bacterial resistance mechanisms targeted at the cationic character of most AMPs. Moreover, they suggest that the antimicrobial activity of dermcidin is dependent on the interaction with the bacterial membrane and might thus assist with the determination of the yet unknown mode of action of this important human AMP.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19596877
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9983
      1. Author :
        Palmer, Kelli L; Aye, Lindsay M; Whiteley, Marvin
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2007
      5. Publication :
        Journal of bacteriology
      6. Products :
      7. Volume :
        189
      8. Issue :
        22
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Adult; Anti-Bacterial Agents; Bacterial Proteins; Bacteriological Techniques; Bioware; Culture Media; Cystic Fibrosis; Gene Expression Profiling; Gene Expression Regulation, Bacterial; Humans; Pseudomonas aeruginosa; Sputum; Staphylococcus aureus; Xen36
      12. Abstract :
        The sputum (mucus) layer of the cystic fibrosis (CF) lung is a complex substrate that provides Pseudomonas aeruginosa with carbon and energy to support high-density growth during chronic colonization. Unfortunately, the CF lung sputum layer has been difficult to mimic in animal models of CF disease, and mechanistic studies of P. aeruginosa physiology during growth in CF sputum are hampered by its complexity. In this study, we performed chromatographic and enzymatic analyses of CF sputum to develop a defined, synthetic CF sputum medium (SCFM) that mimics the nutritional composition of CF sputum. Importantly, P. aeruginosa displays similar phenotypes during growth in CF sputum and in SCFM, including similar growth rates, gene expression profiles, carbon substrate preferences, and cell-cell signaling profiles. Using SCFM, we provide evidence that aromatic amino acids serve as nutritional cues that influence cell-cell signaling and antimicrobial activity of P. aeruginosa during growth in CF sputum.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17873029
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9985
Back to Search
Select All  |  Deselect All