Home |
Headers act as filters
- Records
-
- Author
:
Holland, Sacha J; Pan, Alison; Franci, Christian; Hu, Yuanming; Chang, Betty; Li, Weiqun; Duan, Matt; Torneros, Allan; Yu, Jiaxin; Heckrodt, Thilo J; Zhang, Jing; Ding, Pingyu; Apatira, Ayodele; Chua, Joanne; Brandt, Ralf; Pine, Polly; Goff, Dane; Singh, Rajinder; Payan, Donald G; Hitoshi, Yasumichi - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Cancer research - Products
:
- Volume
:
70 - Issue
:
4 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Antineoplastic Agents; Benzocycloheptenes; Bioware; Breast Neoplasms; Carcinoma; Female; Hela Cells; Humans; K562 Cells; MDA-MB-231-D3H2LN cells; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Invasiveness; Neoplasm Metastasis; Oncogene Proteins; Protein kinase inhibitors; Proto-Oncogene Proteins; Receptor Protein-Tyrosine Kinases; Survival Analysis; Triazoles; Tumor Cells, Cultured; Xenograft Model Antitumor Assays - Abstract
:
Accumulating evidence suggests important roles for the receptor tyrosine kinase Axl in cancer progression, invasion, metastasis, drug resistance, and patient mortality, highlighting Axl as an attractive target for therapeutic development. We have generated and characterized a potent and selective small-molecule inhibitor, R428, that blocks the catalytic and procancerous activities of Axl. R428 inhibits Axl with low nanomolar activity and blocked Axl-dependent events, including Akt phosphorylation, breast cancer cell invasion, and proinflammatory cytokine production. Pharmacologic investigations revealed favorable exposure after oral administration such that R428-treated tumors displayed a dose-dependent reduction in expression of the cytokine granulocyte macrophage colony-stimulating factor and the epithelial-mesenchymal transition transcriptional regulator Snail. In support of an earlier study, R428 inhibited angiogenesis in corneal micropocket and tumor models. R428 administration reduced metastatic burden and extended survival in MDA-MB-231 intracardiac and 4T1 orthotopic (median survival, >80 days compared with 52 days; P < 0.05) mouse models of breast cancer metastasis. Additionally, R428 synergized with cisplatin to enhance suppression of liver micrometastasis. Our results show that Axl signaling regulates breast cancer metastasis at multiple levels in tumor cells and tumor stromal cells and that selective Axl blockade confers therapeutic value in prolonging survival of animals bearing metastatic tumors. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/20145120 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8949
- Author
-
- Author
:
Hu, Guohong; Chong, Robert A; Yang, Qifeng; Wei, Yong; Blanco, Mario A; Li, Feng; Reiss, Michael; Au, Jessie L-S; Haffty, Bruce G; Kang, Yibin - Title
:
- Type
:
Journal Article - Year
:
2009 - Publication
:
Cancer cell - Products
:
- Volume
:
15 - Issue
:
1 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Aldehyde Dehydrogenase; Animals; Bioware; Breast Neoplasms; Cell Adhesion Molecules; Cell Line, Tumor; Chromosomes, Human, Pair 8; Drug Resistance, Neoplasm; Gene Expression Profiling; Genome, Human; Humans; MDA-MB-231-D3H2LN cells; Mice; Mice, Nude; Neoplasm Metastasis; Neoplasm Recurrence, Local; Prognosis; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-met; Receptors, Growth Factor; Survival Rate; Xenograft Model Antitumor Assays - Abstract
:
Targeted therapy for metastatic diseases relies on the identification of functionally important metastasis genes from a large number of random genetic alterations. Here we use a computational algorithm to map minimal recurrent genomic alterations associated with poor-prognosis breast cancer. 8q22 genomic gain was identified by this approach and validated in an extensive collection of breast tumor samples. Regional gain of 8q22 elevates expression of the metastasis gene metadherin (MTDH), which is overexpressed in more than 40% of breast cancers and is associated with poor clinical outcomes. Functional characterization of MTDH revealed its dual role in promoting metastatic seeding and enhancing chemoresistance. These findings establish MTDH as an important therapeutic target for simultaneously enhancing chemotherapy efficacy and reducing metastasis risk. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/19111877 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8957
- Author
-
- Author
:
Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony - Title
:
- Type
:
Journal Article - Year
:
2005 - Publication
:
Breast cancer research: BCR - Products
:
- Volume
:
7 - Issue
:
4 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Bioware; Breast Neoplasms; Disease Models, Animal; Female; Humans; Luciferases; Mammary Neoplasms, Animal; MDA-MB-231-D3H2LN cells; Mice; Mice, Nude; Neoplasm Metastasis; Plasmids; Transplantation, Heterologous; Tumor Cells, Cultured - Abstract
:
INTRODUCTION Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. METHOD Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. RESULTS The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4-6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at multiple sites simultaneously. Ex vivo imaging data from sampled tissues verified both skeletal and multiple soft tissue tumor metastasis. CONCLUSION This study characterized two new bioluminescent MDA-MB-231-luc human breast carcinoma cell lines with enhanced tumor growth and widespread metastasis in mice. Their application to current xenograft models of breast cancer offers rapid and highly sensitive detection options for preclinical assessment of anticancer therapies in vivo. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/15987449 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8960
- Author
-
- Author
:
Mulivor, A.; Barbosa, D.; Kumar, R.; Underwood, K.; Ucran, J.; Seehra, J.; Pearsall, R. - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Cancer Research - Products
:
- Volume
:
69 - Issue
:
24 Supplement - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Bioware; MDA-MB-231-D3H2LN cells - Abstract
:
N/A - URL
:
http://cancerres.aacrjournals.org/cgi/content/abstract/69/24_MeetingAbstracts/5058 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8956
- Author
-
- Author
:
Mulivor, A.W.; Barbosa, D.; Kumar, R.; Pearsall, A.E.; Underwood, K.W.; Ucran, J.A.; Seehra, J.; Pearsall, R. - Title
:
- Type
:
Journal Article - Year
:
2009 - Publication
:
Bone - Products
:
- Volume
:
44 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Bioware; MDA-MB-231-D3H2LN cells - Abstract
:
N/A - URL
:
http://www.journals.elsevierhealth.com/periodicals/bon/article/S8756-3282(09)00602-4/abstract - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8955
- Author
-
- Author
:
Palma, Joann P; Wang, Yi-Chun; Rodriguez, Luis E; Montgomery, Debra; Ellis, Paul A; Bukofzer, Gail; Niquette, Amanda; Liu, Xuesong; Shi, Yan; Lasko, Loren; Zhu, Gui-Dong; Penning, Thomas D; Giranda, Vincent L; Rosenberg, Saul H; Frost, David J; Donawho, Cherrie K - Title
:
- Type
:
Journal Article - Year
:
2009 - Publication
:
Clinical cancer research: an official journal of the American Association for Cancer Research - Products
:
- Volume
:
15 - Issue
:
23 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; Bioware; Dacarbazine; DNA Damage; DNA Modification Methylases; DNA Repair; DNA Repair Enzymes; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Humans; MDA-MB-231-D3H2LN cells; Mice; Mice, SCID; Neoplasm Metastasis; Neoplasm Transplantation; Tumor Suppressor Proteins - Abstract
:
PURPOSE ABT-888, currently in phase 2 trials, is a potent oral poly(ADP-ribose) polymerase inhibitor that enhances the activity of multiple DNA-damaging agents, including temozolomide (TMZ). We investigated ABT-888+TMZ combination therapy in multiple xenograft models representing various human tumors having different responses to TMZ. EXPERIMENTAL DESIGN ABT-888+TMZ efficacy in xenograft tumors implanted in subcutaneous, orthotopic, and metastatic sites was assessed by tumor burden, expression of poly(ADP-ribose) polymer, and O(6)-methylguanine methyltransferase (MGMT). RESULTS Varying levels of ABT-888+TMZ sensitivity were evident across a broad histologic spectrum of models (55-100% tumor growth inhibition) in B-cell lymphoma, small cell lung carcinoma, non-small cell lung carcinoma, pancreatic, ovarian, breast, and prostate xenografts, including numerous regressions. Combination efficacy in otherwise TMZ nonresponsive tumors suggests that TMZ resistance may be overcome by poly(ADP-ribose) polymerase inhibition. Profound ABT-888+TMZ efficacy was seen in experimental metastases models that acquired resistance to TMZ. Moreover, TMZ resistance was overcome in crossover treatments, indicating that combination therapy may overcome acquired TMZ resistance. Neither tumor MGMT, mismatch repair, nor poly(ADP-ribose) polymer correlated with the degree of sensitivity to ABT-888+TMZ. CONCLUSIONS Robust ABT-888+TMZ efficacy is observed across a spectrum of tumor types, including orthotopic and metastatic implantation. As many TMZ nonresponsive tumors proved sensitive to ABT-888+TMZ, this novel combination may broaden the clinical use of TMZ beyond melanoma and glioma. Although TMZ resistance may be influenced by MGMT, neither MGMT nor other mechanisms of TMZ resistance (mismatch repair) precluded sensitivity to ABT-888+TMZ. Underlying mechanisms of TMZ resistance in these models are not completely understood but likely involve mechanisms independent of MGMT. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/19934293 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8954
- Author
-
- Author
:
Qamri, Zahida; Preet, Anju; Nasser, Mohd W; Bass, Caroline E; Leone, Gustavo; Barsky, Sanford H; Ganju, Ramesh K - Title
:
- Type
:
Journal Article - Year
:
2009 - Publication
:
Molecular cancer therapeutics - Products
:
- Volume
:
8 - Issue
:
11 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Apoptosis; Benzoxazines; Bioware; Breast Neoplasms; Cannabinoids; Cell Cycle; Cell Growth Processes; Cell Line, Tumor; Cell Movement; Cyclooxygenase 2; Dinoprostone; Female; Humans; Immunohistochemistry; Lung Neoplasms; Male; Mammary Neoplasms, Experimental; MDA-MB-231-D3H2LN cells; Mice; Mice, Inbred C3H; Mice, SCID; Mice, Transgenic; Microscopy, Confocal; Morpholines; Naphthalenes; Neoplasm Metastasis; Neovascularization, Pathologic; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; RNA, Small Interfering; Signal Transduction; Transfection; Xenograft Model Antitumor Assays - Abstract
:
Cannabinoids have been reported to possess antitumorogenic activity. Not much is known, however, about the effects and mechanism of action of synthetic nonpsychotic cannabinoids on breast cancer growth and metastasis. We have shown that the cannabinoid receptors CB1 and CB2 are overexpressed in primary human breast tumors compared with normal breast tissue. We have also observed that the breast cancer cell lines MDA-MB231, MDA-MB231-luc, and MDA-MB468 express CB1 and CB2 receptors. Furthermore, we have shown that the CB2 synthetic agonist JWH-133 and the CB1 and CB2 agonist WIN-55,212-2 inhibit cell proliferation and migration under in vitro conditions. These results were confirmed in vivo in various mouse model systems. Mice treated with JWH-133 or WIN-55,212-2 showed a 40% to 50% reduction in tumor growth and a 65% to 80% reduction in lung metastasis. These effects were reversed by CB1 and CB2 antagonists AM 251 and SR144528, respectively, suggesting involvement of CB1 and CB2 receptors. In addition, the CB2 agonist JWH-133 was shown to delay and reduce mammary gland tumors in the polyoma middle T oncoprotein (PyMT) transgenic mouse model system. Upon further elucidation, we observed that JWH-133 and WIN-55,212-2 mediate the breast tumor-suppressive effects via a coordinated regulation of cyclooxygenase-2/prostaglandin E2 signaling pathways and induction of apoptosis. These results indicate that CB1 and CB2 receptors could be used to develop novel therapeutic strategies against breast cancer growth and metastasis. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/19887554 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8953
- Author
-
- Author
:
Quintela-Fandino, Miguel; Arpaia, Enrico; Brenner, Dirk; Goh, Theo; Yeung, Faith Au; Blaser, Heiko; Alexandrova, Roumiana; Lind, Evan F; Tusche, Mike W; Wakeham, Andrew; Ohashi, Pamela S; Mak, Tak W - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Proceedings of the National Academy of Sciences of the United States of America - Products
:
- Volume
:
107 - Issue
:
6 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Actins; Animals; B16-F10-luc-G5; Bioware; Breast Neoplasms; Cell Line, Tumor; Cell Movement; Cofilin 1; Cytoskeleton; Female; Humans; Immunoblotting; Immunoprecipitation; Male; Mammary Neoplasms, Experimental; MDA-MB-231-D3H2LN cells; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Neoplasm Invasiveness; Neoplasm Metastasis; Phosphorylation; Protein Binding; Protein Kinases; Protein Phosphatase 2; Protein-Serine-Threonine Kinases; RNA Interference; Transplantation, Heterologous - Abstract
:
Metastasis leads to the death of most cancer patients, and basal breast cancer is the most aggressive breast tumor type. Metastasis involves a complex cell migration process dependent on cytoskeletal remodeling such that targeting such remodeling in tumor cells could be clinically beneficial. Here we show that Hormonally Up-regulated Neu-associated Kinase (HUNK) is dramatically down-regulated in tumor samples and cell lines derived from basal breast cancers. Reconstitution of HUNK expression in basal breast cancer cell lines blocked actin polymerization and reduced cell motility, resulting in decreased metastases in two in vivo murine cancer models. Mechanistically, HUNK overexpression sustained the constitutive phosphorylation and inactivation of cofilin-1 (CFL-1), thereby blocking the incorporation of new actin monomers into actin filaments. HUNK reconstitution in basal breast cancer cell lines prevented protein phosphatase 2-A (PP2A), a phosphatase putatively acting on CFL-1, from binding to CFL-1. Our investigation of HUNK suggests that the interaction between PP2A and CFL-1 may be a target for antimetastasis therapy, particularly for basal breast cancers. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/20133759 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8951
- Author
-
- Author
:
Woods, Nicholas T; Yamaguchi, Hirohito; Lee, Francis Y; Bhalla, Kapil N; Wang, Hong-Gang - Title
:
- Type
:
Journal Article - Year
:
2007 - Publication
:
Cancer research - Products
:
- Volume
:
67 - Issue
:
22 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals; Anoikis; Apoptosis Regulatory Proteins; bcl-2-Associated X Protein; Bioware; Caspase 3; Cell Line, Tumor; Gene Expression Regulation, Neoplastic; Glycogen Synthase Kinase 3; Humans; L-Lactate Dehydrogenase; MDA-MB-231-D3H2LN cells; Membrane Proteins; Mice; Neoplasm Metastasis; Neoplasm Proteins; NIH 3T3 Cells; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2 - Abstract
:
Anoikis, a Bax-dependent apoptosis triggered by detachment from the extracellular matrix, is often dysfunctional in metastatic cancer cells. Using wild-type and c-Src-transformed NIH3T3 cells as a model, we identified Mcl-1 degradation and Bim up-regulation as a critical determinant of anoikis initiation. Detachment rapidly degraded Mcl-1 via a GSK-3beta-dependent proteasomal pathway and transcriptionally up-regulated Bim expression. Mcl-1 degradation in the presence of Bim was sufficient to induce anoikis. By analyzing nonmetastatic Saos-2 and metastatic derivative LM7 cells, we confirmed that dysregulation of Mcl-1 degradation and Bim induction during detachment contributes to decreased anoikis sensitivity of metastatic cells. Furthermore, knockdown of Mcl-1 or pharmacologic inhibition of the phosphoinositide-3-kinase/Akt and mitogen-activated protein kinase pathways that suppress Mcl-1 degradation and Bim expression could markedly sensitize metastatic breast cancer cells to anoikis and prevent metastases in vivo. Therefore, Mcl-1 degradation primes the cell for Bax activation and anoikis, which can be blocked by oncogenic signaling in metastatic cells. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/18006817 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8959
- Author
-
- Author
:
Beckers, Annelies; Organe, Sophie; Timmermans, Leen; Scheys, Katryn; Peeters, Annelies; Brusselmans, Koen; Verhoeven, Guido; Swinnen, Johannes V - Title
:
- Type
:
Journal Article - Year
:
2007 - Publication
:
Cancer research - Products
:
- Volume
:
67 - Issue
:
17 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Acetyl-CoA Carboxylase; Apoptosis; Autophagy; Bioware; Cell Death; Cell Proliferation; Drug Evaluation, Preclinical; Fatty Acids; Humans; Macrolides; Male; Neoplasms; Palmitic Acid; PC-3M-luc; Phospholipids; Prostatic Neoplasms; Tumor Cells, Cultured - Abstract
:
Development and progression of cancer is accompanied by marked changes in the expression and activity of enzymes involved in the cellular homeostasis of fatty acids. One class of enzymes that play a particularly important role in this process are the acetyl-CoA carboxylases (ACC). ACCs produce malonyl-CoA, an intermediate metabolite that functions as substrate for fatty acid synthesis and as negative regulator of fatty acid oxidation. Here, using the potent ACC inhibitor soraphen A, a macrocyclic polyketide from myxobacteria, we show that ACC activity in cancer cells is essential for proliferation and survival. Even at nanomolar concentrations, soraphen A can block fatty acid synthesis and stimulate fatty acid oxidation in LNCaP and PC-3M prostate cancer cells. As a result, the phospholipid content of cancer cells decreased, and cells stopped proliferating and ultimately died. LNCaP cells predominantly died through apoptosis, whereas PC-3M cells showed signs of autophagy. Supplementation of the culture medium with exogenous palmitic acid completely abolished the effects of soraphen A and rescued the cells from cell death. Interestingly, when added to cultures of premalignant BPH-1 cells, soraphen A only slightly affected cell proliferation and did not induce cell death. Together, these findings indicate that cancer cells have become dependent on ACC activity to provide the cell with a sufficient supply of fatty acids to permit proliferation and survival, introducing the concept of using small-molecule ACC inhibitors as therapeutic agents for cancer. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/17804731 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8974
- Author