1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

301–310 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Barman, T. K.; Rao, M.; Bhati, A.; Kishore, K.; Shukla, G.; Kumar, M.; Mathur, T.; Pandya, M.; Upadhyay, D. J.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Indian J Med Res
      6. Products :
      7. Volume :
        134
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen10, Xen 10, Streptococcus pnuemoniae Xen10, IVIS,
      12. Abstract :
        Background & objectives: In vivo imaging system has contributed significantly to the understanding of bacterial infection and efficacy of drugs in animal model. We report five rapid, reproducible, and non invasive murine pulmonary infection, skin and soft tissue infection, sepsis, and meningitis models using Xenogen bioluminescent strains and specialized in vivo imaging system (IVIS). Methods: The progression of bacterial infection in different target organs was evaluated by the photon intensity and target organ bacterial counts. Genetically engineered bioluminescent bacterial strains viz. Staphylococcus aureus Xen 8.1, 29 and 31; Streptococcus pneumoniae Xen 9 and 10 and Pseudomonas aeruginosa Xen-5 were used to induce different target organs infection and were validated with commercially available antibiotics. Results: The lower limit of detection of colony forming unit (cfu) was 1.7-log10 whereas the lower limit of detection of relative light unit (RLU) was 4.2-log10 . Recovery of live bacteria from different target organs showed that the bioluminescent signal correlated to the live bacterial count. Interpretation & conclusions: This study demonstrated the real time monitoring and non-invasive analysis of progression of infection and pharmacological efficacy of drugs. These models may be useful for pre-clinical discovery of new antibiotics.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22199109
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10399
      1. Author :
        Xu, D.; Takeshita, F.; Hino, Y.; Fukunaga, S.; Kudo, Y.; Tamaki, A.; Matsunaga, J.; Takahashi, R. U.; Takata, T.; Shimamoto, A.; Ochiya, T.; Tahara, H.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        J Cell Biol
      6. Products :
      7. Volume :
        193
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-D3H2Ln, IVIS, Bioluminescence
      12. Abstract :
        Cellular senescence acts as a barrier to cancer progression, and microRNAs (miRNAs) are thought to be potential senescence regulators. However, whether senescence-associated miRNAs (SA-miRNAs) contribute to tumor suppression remains unknown. Here, we report that miR-22, a novel SA-miRNA, has an impact on tumorigenesis. miR-22 is up-regulated in human senescent fibroblasts and epithelial cells but down-regulated in various cancer cell lines. miR-22 overexpression induces growth suppression and acquisition of a senescent phenotype in human normal and cancer cells. miR-22 knockdown in presenescent fibroblasts decreased cell size, and cells became more compact. miR-22-induced senescence also decreases cell motility and inhibits cell invasion in vitro. Synthetic miR-22 delivery suppresses tumor growth and metastasis in vivo by inducing cellular senescence in a mouse model of breast carcinoma. We confirmed that CDK6, SIRT1, and Sp1, genes involved in the senescence program, are direct targets of miR-22. Our study provides the first evidence that miR-22 restores the cellular senescence program in cancer cells and acts as a tumor suppressor.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21502362
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10417
      1. Author :
        Liu, W. F.; Ma, M.; Bratlie, K. M.; Dang, T. T.; Langer, R.; Anderson, D. G.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Biomaterials
      6. Products :
      7. Volume :
        32
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        ProSense, IVIS, Animals; Biocompatible Materials/*adverse effects; Cells, Cultured; Free Radicals/metabolism; Immunohistochemistry; Male; Mice; Prostheses and Implants/*adverse effects; Reactive Oxygen Species/*metabolism
      12. Abstract :
        The non-specific host response to implanted biomaterials is often a key challenge of medical device design. To evaluate biocompatibility, measuring the release of reactive oxygen species (ROS) produced by inflammatory cells in response to biomaterial surfaces is a well-established method. However, the detection of ROS in response to materials implanted in vivo has not yet been demonstrated. Here, we develop a bioluminescence whole animal imaging approach to observe ROS released in response to subcutaneously-implanted materials in live animals. We compared the real-time generation of ROS in response to two representative materials, polystyrene and alginate, over the course of 28 days. High levels of ROS were observed near polystyrene, but not alginate implants, and persisted throughout the course of 28 days. Histological analysis revealed that high levels of ROS correlated not only with the presence of phagocytic cells at early timepoints, but also fibrosis at later timepoints, suggesting that ROS may be involved in both the acute and chronic phase of the foreign body response. These data are the first in vivo demonstration of ROS generation in response to implanted materials, and describe a novel technique to evaluate the host response.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21146868
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10428
      1. Author :
        Stelter, L.; Tseng, J. C.; Torosjan, A.; Levin, B.; Longo, V. A.; Pillarsetty, N.; Zanzonico, P.; Meruelo, D.; Larson, S. M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Mol Imaging Biol
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        AngioSense, FMT, IVIS, Biolumninescence
      12. Abstract :
        PURPOSE: Sindbis virus (SINV) infect tumor cells specifically and systemically throughout the body. Sindbis vectors are capable of expressing high levels of transduced suicide genes and thus efficiently produce enzymes for prodrug conversion in infected tumor cells. The ability to monitor suicide gene expression levels and viral load in patients, after administration of the vectors, would significantly enhance this tumor-specific therapeutic option. PROCEDURES: The tumor specificity of SINV is mediated by the 67-kDa laminin receptor (LR). We probed different cancer cell lines for their LR expression and, to determine the specific role of LR-expression in the infection cycle, used different molecular imaging strategies, such as bioluminescence, fluorescence molecular tomography, and positron emission tomography, to evaluate SINV-mediated infection in vitro and in vivo. RESULTS: All cancer cell lines showed a marked expression of LR. The infection rates of the SINV particles, however, differed significantly among the cell lines. CONCLUSION: We used novel molecular imaging techniques to visualize vector delivery to different neoplatic cells. SINV infection rates proofed to be not solely dependent on cellular LR expression. Further studies need to evaluate the herein discussed ways of cellular infection and viral replication.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22847302
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10440
      1. Author :
        Tsunooka, N.; Hirayama, S.; Medin, J. A.; Liles, W. C.; Keshavjee, S.; Waddell, T. K.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Ann Thorac Surg
      6. Products :
      7. Volume :
        91
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IVIS, Xen29, Xen 29, Staphylococcus aureus Xen29, Animals; Disease Models, Animal; Female; Mice; Mice, Inbred C57BL; Pneumonectomy/*adverse effects; Postoperative Complications/*surgery; Stem Cell Transplantation/*methods; Thoracic Cavity/*surgery; Thoracoplasty/*methods; Tissue Engineering/*methods
      12. Abstract :
        BACKGROUND: Transfer of viable tissue flaps and thoracoplasty are effective against pleural space complications after pneumonectomy but highly disfiguring. The aim of this study was to explore the possibility of engineered tissue to treat space complications after pneumonectomy. METHODS: A left pneumonectomy was performed in mice, and the cavity immediately filled with the cellularized collagen matrices. First, bone marrow derived-mesenchymal stroma cells with luciferase expression were used as donor cells to evaluate cell viability and angiogenesis using bioluminescence imaging. Second, using bone marrow cells from GFP mice, histologic evaluation, immunohistochemistry for von Willebrand Factor, and flow cytometric analysis was performed compared with acellular matrix implants. The effect on bacterial clearance was examined using an empyema model with Staphylococcus aureus expressing luciferase. RESULTS: Embedded cells proliferated within the denatured collagen matrices ex vivo. In vivo, bioluminescent imaging activity could be detected till day 8, and the slope (suggesting rate of perfusion with luciferin) increased with time up to day 6 but decreased after day 7. Although GFP-positive donor cells decreased with time, total cellularity increased. Furthermore, vessels stained by von Willebrand factor were significantly increased. Both cellularized and acellularized matrices showed bacterial clearance in vivo. CONCLUSIONS: Cells within collagen matrices survive in the thoracic cavity at early time points. Cellularized matrices quickly lead to neovascularization and recipient cell infiltration. Both cellularized and acellularized matrices show bacterial clearance in vivo. This study indicates the potential feasibility of a novel tissue engineering approach to problems of the postpneumonectomy space.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21353020
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10458
      1. Author :
        Clapper, M. L.; Hensley, H. H.; Chang, W. C.; Devarajan, K.; Nguyen, M. T.; Cooper, H. S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Neoplasia
      6. Products :
      7. Volume :
        13
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MMPSense, IVIS, Adenoma/diagnosis/*enzymology/pathology; Animals; Colorectal Neoplasms/diagnosis/*enzymology/pathology; Disease Models, Animal; Female; *Fluorescent Dyes/administration & dosage/diagnostic use; Male; Matrix Metalloproteinases/*metabolism; Mice; Mice, Inbred C57BL; Molecular Imaging
      12. Abstract :
        A significant proportion of colorectal adenomas, in particular those that lack an elevated growth component, continue to escape detection during endoscopic surveillance. Elevation of the activity of matrix metalloproteinases (MMPs), a large family of zinc endopeptidases, in adenomas serves as a biomarker of early tumorigenesis. The goal of this study was to assess the feasibility of using a newly developed near-infrared bioactivatable probe (MMPSense 680) that reports the activity of a broad array of MMP isoforms to detect early colorectal adenomas. Adenomatous polyposis coli (Apc)(+/Min-FCCC) mice that spontaneously develop multiple colorectal adenomas were injected with MMPSense 680, and the colons were imaged in an IVIS Spectrum system ex vivo. Image analyses were correlated with histopathologic findings for all regions of interest (ROIs). The biochemical basis of fluorescent signal was investigated by immunohistochemical staining of MMP-7 and -9. A strong correlation (Kendall = 0.80) was observed between a positive signal and the presence of pathologically confirmed colonic adenomas; 92.9% of the 350 ROIs evaluated were classified correctly. The correlation between two independent observers was 0.87. MMP-7 expression was localized to epithelial cells of adenomas and microadenomas, whereas staining of MMP-9 was found in infiltrating polymorphonuclear leukocytes within the adenomas. MMPSense 680 identifies colorectal adenomas, both polypoid and nonpolypoid, in Apc(+/Min-FCCC) mice with high specificity. Use of this fluorescent probe in combination with colonoscopy could aid in preventing colorectal neoplasias by providing new opportunities for early detection and therapeutic intervention.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21847360
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10459
      1. Author :
        Las Heras, F.; DaCosta, R. S.; Pritzker, K. P.; Haroon, N.; Netchev, G.; Tsui, H. W.; Chiu, B.; Erwin, W. M.; Tsui, F. W.; Inman, R. D.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Arthritis Res Ther
      6. Products :
      7. Volume :
        13
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        OsteoSense, Animals; Axis/chemistry/*metabolism/*pathology; *Calcification, Physiologic/genetics; Inflammation/genetics/metabolism/prevention & control; Mice; Mice, Transgenic; Molecular Imaging/*methods; Spondylitis, Ankylosing/diagnosis/*genetics/*metabolism; Time Factors
      12. Abstract :
        INTRODUCTION: The diagnosis of ankylosing spondylitis is made from a combination of clinical features and the presence of radiographic evidence that may be detected only after many years of inflammatory back pain. It is not uncommon to have a diagnosis confirmed 5 to 10 years after the initial onset of symptoms. Development of a more-sensitive molecular imaging technology to detect structural changes in the joints would lead to earlier diagnosis and quantitative tracking of ankylosis progression. Progressive ankylosis (ank/ank) mice have a loss of function in the Ank gene, which codes for a regulator of PPi transport. In this study, we used these ank/ank mutant mice to assess a noninvasive, quantitative measure of joint ankylosis with near-infrared (NIR) molecular imaging in vivo. METHODS: Three age groups (8, 12, and 18 weeks) of ank/ank (15 mice) and wild-type littermates (12 +/+ mice) were assessed histologically and radiographically. Before imaging, OsteoSense 750 (bisphosphonate pamidronate) was injected i.v. Whole-body images were analyzed by using the multispectral Maestro imaging system. RESULTS: OsteoSense 750 signals in the paw joints were higher in ank/ank mice in all three age groups compared with controls. In the spine, significantly higher OsteoSense 750 signals were detected early, in 8-week-old ank/ank mice compared with controls, although minimal radiographic differences were noted at this time point. The molecular imaging changes in the ank/ank spine (8 weeks) were supported by histologic changes, including calcium apatite crystals at the edge of the vertebral bodies and new syndesmophyte formation. CONCLUSIONS: Changes in joint pathology of ank/ank mice, as evaluated by histologic and radiographic means, are qualitative, but only semiquantitative. In contrast, molecular imaging provides a quantitative assessment. Ankylosis in ank/ank mice developed simultaneously in distal and axial joints, contrary to the previous notion that it is a centripetal process. NIR imaging might be feasible for early disease diagnosis and for monitoring disease progression in ankylosing spondylitis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21992149
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10471
      1. Author :
        Liu, W.; McDaniel, J.; Li, X.; Asai, D.; Quiroz, F. G.; Schaal, J.; Park, J. S.; Zalutsky, M.; Chilkoti, A.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Cancer Res
      6. Products :
      7. Volume :
        72
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        PC-3M-luc2, PC3M-luc2, IVIS, Prostate Cancer, Bioware
      12. Abstract :
        Brachytherapy is a common clinical technique involving implantation of sealed radioactive “seeds” within a tumor to selectively irradiate the tumor mass while minimizing systemic toxicity. To mitigate the disadvantages associated with complex surgical implantation and subsequent device removal procedures, we have developed an alternative approach using a genetically encoded peptide polymer solution composed of a thermally responsive elastin-like polypeptide (ELP) radiolabeled with (131)I that self-assembles into radionuclide seeds upon intratumoral injection. The formation of these nontoxic and biodegradable polymer seeds led to prolonged intratumoral retention (~85% ID/tumor 7 days postinjection) of the radionuclide, elicited a tumor growth delay in 100% of the tumors in two human xenografts (FaDu and PC-3), and cured more than 67% of tumor-bearing animals after a single administration of labeled ELP. These results suggest that in situ self-assembly of biodegradable and injectable radionuclide-containing polypeptide seeds could be a promising therapeutic alternative to conventional brachytherapy.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23155121
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10487
      1. Author :
        Guo, K.; Tang, J. P.; Jie, L.; Al-Aidaroos, A. Q.; Hong, C. W.; Tan, C. P.; Park, J. E.; Varghese, L.; Feng, Z.; Zhou, J.; Chng, W. J.; Zeng, Q.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Oncotarget
      6. Products :
      7. Volume :
        3
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        HCT-116-luc2, IVIS, Bioware, HCT116-luc2, Animals; Antibodies, Monoclonal/*immunology; Antibody-Dependent Cell Cytotoxicity/immunology; Carcinoma, Non-Small-Cell Lung/drug therapy; Carcinoma, Squamous Cell/drug therapy; Cell Line, Tumor; Colorectal Neoplasms/drug therapy; Humans; Immediate-Early Proteins/*immunology; Killer Cells, Natural/*immunology; Lymphocyte Activation/immunology; Melanoma/drug therapy; Mice; Mice, Nude; Mice, SCID; Molecular Targeted Therapy/*methods; Protein Tyrosine Phosphatases/*immunology; Recombinant Fusion Proteins/immunology/pharmacology/therapeutic use
      12. Abstract :
        Antibodies are considered as 'magic bullets' because of their high specificity. It is believed that antibodies are too large to routinely enter the cytosol, thus antibody therapeutic approach has been limited to extracellular or secreted proteins expressed by cancer cells. However, many oncogenic proteins are localized within the cell. To explore the possibility of antibody therapies against intracellular targets, we generated a chimeric antibody targeting the intracellular PRL-3 oncoprotein to assess its antitumor activities in mice. Remarkably, we observed that the PRL-3 chimeric antibody could efficiently and specifically reduce the formation of PRL-3 expressing metastatic tumors. We further found that natural killer (NK) cells were important in mediating the therapeutic effect, which was only observed in a nude mouse model (T-cell deficient), but not in a Severe Combined Immunodeficiency' (scid ) mouse model (B- and T-cell deficient), indicating the anticancer effect also depends on host B-cell activity. Our study involving 377 nude and scid mice suggest that antibodies targeting intracellular proteins can be developed to treat cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22374986
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10497
Back to Search
Select All  |  Deselect All