Home |
Headers act as filters
- Records
-
- Author
:
Park, H. S.; Cleary, P. P. - Title
:
- Type
:
Journal Article - Year
:
2005 - Publication
:
Infection and Immunity - Products
:
- Volume
:
73 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
IVIS, Xenogen, Xen20 - Abstract
:
C5a peptidase, also called SCPA (surface-bound C5a peptidase), is a surface-bound protein on group A streptococci (GAS), etiologic agents for a variety of human diseases including pharyngitis, impetigo, toxic shock, and necrotizing fasciitis, as well as the postinfection sequelae rheumatic fever and rheumatic heart disease. This protein is highly conserved among different serotypes and is also expressed in human isolates of group B, C, and G streptococci. Human tonsils are the primary reservoirs for GAS, maintaining endemic disease across the globe. We recently reported that GAS preferentially target nasal mucosa-associated lymphoid tissue (NALT) in mice, a tissue functionally analogous to human tonsils. Experiments using a C5a peptidase loss-of-function mutant and an intranasal infection model showed that this protease is required for efficient colonization of NALT. An effective vaccine should prevent infection of this secondary lymphoid tissue; therefore, the potential of anti-SCPA antibodies to protect against streptococcal infection of NALT was investigated. Experiments showed that GAS colonization of NALT was significantly reduced following intranasal immunization of mice with recombinant SCPA protein administered alone or with cholera toxin, whereas a high degree of GAS colonization of NALT was observed in control mice immunized with phosphate-buffered saline only. Moreover, administration of anti-SCPA serum by the intranasal route protected mice against streptococcal infection. These results suggest that intranasal immunization with SCPA would prevent colonization and infection of human tonsils, thereby eliminating potential reservoirs that maintain endemic disease. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/16299278 - Call Number
:
141964 - Serial
:
5327
- Author
-
- Author
:
Pribaz, J. R.; Bernthal, N. M.; Billi, F.; Cho, J. S.; Ramos, R. I.; Guo, Y.; Cheung, A. L.; Francis, K. P.; Miller, L. S. - Title
:
- Type
:
Journal Article - Year
:
2011 - Publication
:
Journal of orthopaedic research : official publication of the Orthopaedic Research Society - Products
:
- Volume
:
N/A - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
N/A - Abstract
:
Post-arthroplasty infections are a devastating problem in orthopaedic surgery. While acute infections can be treated with a single stage washout and liner exchange, chronic infections lead to multiple reoperations, prolonged antibiotic courses, extended disability, and worse clinical outcomes. Unlike previous mouse models that studied an acute infection, this work aimed to develop a model of a chronic post-arthroplasty infection. To achieve this, a stainless steel implant in the knee joints of mice was inoculated with a bioluminescent Staphylococcus aureus strain (1 x 10(2) -1 x 10(4) colony forming units, CFUs) and in vivo imaging was used to monitor the bacterial burden for 42 days. Four different S. aureus strains were compared in which the bioluminescent construct was integrated in an antibiotic selection plasmid (ALC2906), the bacterial chromosome (Xen29 and Xen40), or a stable plasmid (Xen36). ALC2906 had increased bioluminescent signals through day 10, after which the signals became undetectable. In contrast, Xen29, Xen40, and Xen36 had increased bioluminescent signals through 42 days with the highest signals observed with Xen36. ALC2906, Xen29, and Xen40 induced significantly more inflammation than Xen36 as measured by in vivo enhanced green fluorescence protein (EGFP)-neutrophil flourescence of LysEGFP mice. All four strains induced comparable biofilm formation as determined by variable-pressure scanning electron microscopy. Using a titanium implant, Xen36 had higher in vivo bioluminescence signals than Xen40 but had similar biofilm formation and adherent bacteria. In conclusion, Xen29, Xen40, and especially Xen36, which had stable bioluminescent constructs, are feasible for long-term in vivo monitoring of bacterial burden and biofilm formation to study chronic post-arthroplasty infections and potential antimicrobial interventions. (c) 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/21837686 - Call Number
:
142237 - Serial
:
6983
- Author
-
- Author
:
Sadikot, R. T.; Blackwell, T. S. - Title
:
- Type
:
Journal Article - Year
:
2008 - Publication
:
Methods Mol Biol - Products
:
- Volume
:
477 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Adenoviridae/genetics, Anesthesia, Animals, Firefly Luciferin/administration & dosage/pharmacology, *Gene Expression Regulation/drug effects, Genetic Vectors/genetics, Luciferases/metabolism, Luminescent Measurements/*methods, Mice, Photons, Whole Body Imaging/*methods IVIS, Xenogen, Xen5 - Abstract
:
Molecular imaging offers many unique opportunities to study biological processes in intact organisms. Bioluminescence is the emission of light from biochemical reactions that occur within a living organism. Luciferase has been used as a reporter gene in transgenic mice but, until bioluminescence imaging was described, the detection of luciferase activity required either sectioning of the animal or excision of tissue and homogenization to measure enzyme activities in a conventional luminometer. Bioluminescence imaging (BLI) is based on the idea that biological light sources can be incorporated into cells and animal models artificially that does not naturally express the luminescent genes. This imaging modality has proven to be a very powerful methodology to detect luciferase reporter activity in intact animal models. This form of optical imaging is low cost and noninvasive and facilitates real-time analysis of disease processes at the molecular level in living organisms. Bioluminescence provides a noninvasive method to monitor gene expression in vivo and has enormous potential to elucidate the pathobiology of lung diseases in intact mouse models, including models of inflammation/injury, infection, and cancer. - URL
:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19082962 - Call Number
:
142705 - Serial
:
5558
- Author
-
- Author
:
Sottnik, J. L.; U, L. W.'Ren; Thamm, D. H.; Withrow, S. J.; Dow, S. W. - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Cancer Immunol Immunother - Products
:
- Volume
:
59 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals, Chronic Disease, Disease Models, Animal, Immunity, Innate, Killer Cells, Natural/immunology, Macrophages/immunology, Mice, Mice, Inbred C3H, Mice, Inbred Strains, Monocytes/immunology, Neoplasms, Neovascularization, Pathologic, Osteomyelitis/*complications, Osteosarcoma/*complications/*immunology/pathology, Staphylococcal Infections/*complications IVIS, Xenogen, Xen36 - Abstract
:
Clinical studies over the past several years have reported that metastasis-free survival times in humans and dogs with osteosarcoma are significantly increased in patients that develop chronic bacterial osteomyelitis at their surgical site. However, the immunological mechanism by which osteomyelitis may suppress tumor growth has not been investigated. Therefore, we used a mouse model of osteomyelitis to assess the effects of bone infection on innate immunity and tumor growth. A chronic Staphylococcal osteomyelitis model was established in C3H mice and the effects of infection on tumor growth of syngeneic DLM8 osteosarcoma were assessed. The effects of infection on tumor angiogenesis and innate immunity, including NK cell and monocyte responses, were assessed. We found that osteomyelitis significantly inhibited the growth of tumors in mice, and that the effect was independent of the infecting bacterial type, tumor type, or mouse strain. Depletion of NK cells or monocytes reversed the antitumor activity elicited by infection. Moreover, infected mice had a significant increase in circulating monocytes and numbers of tumor associated macrophages. Infection suppressed tumor angiogenesis but did not affect the numbers of circulating endothelial cells. Therefore, we concluded that chronic localized bacterial infection could elicit significant systemic antitumor activity dependent on NK cells and macrophages. - URL
:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19701748 - Call Number
:
143227 - Serial
:
5718
- Author
-
- Author
:
Wang, J.; Barke, R. A.; Charboneau, R.; Schwendener, R.; Roy, S. - Title
:
- Type
:
Journal Article - Year
:
2008 - Publication
:
J Immunol - Products
:
- Volume
:
180 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Animals, Cell Line, Cell Line, Transformed, Humans, Macrophages, Alveolar/*drug effects/immunology/*microbiology/pathology, Mice, Mice, Inbred C57BL, Morphine/administration & dosage/*therapeutic use, NF-kappa B/*antagonists & inhibitors/physiology, Neutrophil Infiltration/drug effects/immunology, Pneumonia, Pneumococcal/*drug therapy/*immunology/microbiology/mortality, Signal Transduction/*drug effects/immunology, Streptococcus pneumoniae/drug effects/*immunology, Time Factors, Toll-Like Receptor 2/physiology, Toll-Like Receptor 4/physiology, Toll-Like Receptor 9/*antagonists & inhibitors/physiology IVIS, Xenogen, Xen10 - Abstract
:
Resident alveolar macrophages and respiratory epithelium constitutes the first line of defense against invading lung pneumococci. Results from our study showed that increased mortality and bacterial outgrowth and dissemination seen in morphine-treated mice were further exaggerated following depletion of alveolar macrophages with liposomal clodronate. Using an in vitro alveolar macrophages and lung epithelial cells infection model, we show significant release of MIP-2 from alveolar macrophages, but not from lung epithelial cells, following 4 h of exposure of cells to pneumococci infection. Morphine treatment reduced MIP-2 release in pneumococci stimulated alveolar macrophages. Furthermore, morphine treatment inhibited Streptococcus pneumoniae-induced NF-kappaB-dependent gene transcription in alveolar macrophages following 2 h of in vitro infection. S. pneumoniae infection resulted in a significant induction of NF-kappaB activity only in TLR9 stably transfected HEK 293 cells, but not in TLR2 and TLR4 transfected HEK 293 cells, and morphine treatment inhibited S. pneumoniae-induced NF-kappaB activity in these cells. Moreover, morphine treatment also decreased bacterial uptake and killing in alveolar macrophages. Taken together, these results suggest that morphine treatment impairs TLR9-NF-kappaB signaling and diminishes bacterial clearance following S. pneumoniae infection in resident macrophages during the early stages of infection, leading to a compromised innate immune response. - URL
:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18292587 - Call Number
:
144073 - Serial
:
6976
- Author
-
- Author
:
Xiong, Y. Q.; Willard, J.; Kadurugamuwa, J. L.; Yu, J.; Francis, K. P.; Bayer, A. S. - Title
:
- Type
:
Journal Article - Year
:
2005 - Publication
:
Antimicrobial Agents and Chemotherapy - Products
:
- Volume
:
49 - Issue
:
N/A - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
IVIS, Xenogen; Bioware; Xen29 - Abstract
:
Therapeutic options for invasive Staphylococcus aureus infections have become limited due to rising antimicrobial resistance, making relevant animal model testing of new candidate agents more crucial than ever. In the present studies, a rat model of aortic infective endocarditis (IE) caused by a bioluminescently engineered, biofilm-positive S. aureus strain was used to evaluate real-time antibiotic efficacy directly. This strain was vancomycin and cefazolin susceptible but gentamicin resistant. Bioluminescence was detected and quantified daily in antibiotic-treated and control animals with IE, using a highly sensitive in vivo imaging system (IVIS). Persistent and increasing cardiac bioluminescent signals (BLS) were observed in untreated animals. Three days of vancomycin therapy caused significant reductions in both cardiac BLS (>10-fold versus control) and S. aureus densities in cardiac vegetations (P < 0.005 versus control). However, 3 days after discontinuation of vancomycin therapy, a greater than threefold increase in cardiac BLS was observed, indicating relapsing IE (which was confirmed by quantitative culture). Cefazolin resulted in modest decreases in cardiac BLS and bacterial densities. These microbiologic and cardiac BLS differences during therapy correlated with a longer time-above-MIC for vancomycin (>12 h) than for cefazolin (?4 h). Gentamicin caused neither a reduction in cardiac S. aureus densities nor a reduction in BLS. There were significant correlations between cardiac BLS and S. aureus densities in vegetations in all treatment groups. These data suggest that bioluminescent imaging provides a substantial advance in the real-time monitoring of the efficacy of therapy of invasive S. aureus infections in live animals. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/15743898 - Call Number
:
144577 - Serial
:
7474
- Author
-
- Author
:
Beck, Benjamin H; Kim, Hyung-Gyoon; Kim, Hyunki; Samuel, Sharon; Liu, Zhiyong; Shrestha, Robin; Haines, Hilary; Zinn, Kurt; Lopez, Richard D - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
Breast cancer research and treatment - Products
:
- Volume
:
122 - Issue
:
1 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
4T1-luc2; Adenocarcinoma; Animals; Bioware; Breast Neoplasms; Cell Line, Tumor; Chemotaxis, Leukocyte; Cytotoxicity, Immunologic; Female; Humans; Immunotherapy, Adoptive; Indium Radioisotopes; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Mice, Knockout; Neoplasm Transplantation; Radiopharmaceuticals; Receptors, Antigen, T-Cell, gamma-delta; Spleen; Tissue Distribution; T-Lymphocyte Subsets; Tomography, Emission-Computed, Single-Photon; Transplantation, Heterologous; Transplantation, Isogeneic - Abstract
:
In contrast to antigen-specific alphabeta-T cells (adaptive immune system), gammadelta-T cells can recognize and lyse malignantly transformed cells almost immediately upon encounter in a manner that does not require the recognition of tumor-specific antigens (innate immune system). Given the well-documented capacity of gammadelta-T cells to innately kill a variety of malignant cells, efforts are now actively underway to exploit the antitumor properties of gammadelta-T cells for clinical purposes. Here, we present for the first time preclinical in vivo mouse models of gammadelta-T cell-based immunotherapy directed against breast cancer. These studies were explicitly designed to approximate clinical situations in which adoptively transferred gammadelta-T cells would be employed therapeutically against breast cancer. Using radioisotope-labeled gammadelta-T cells, we first show that adoptively transferred gammadelta-T cells localize to breast tumors in a mouse model (4T1 mammary adenocarcinoma) of human breast cancer. Moreover, by using an antibody directed against the gammadelta-T cell receptor (TCR), we determined that localization of adoptively transferred gammadelta-T cells to tumor is a TCR-dependant process. Additionally, biodistribution studies revealed that adoptively transferred gammadelta-T cells traffic differently in tumor-bearing mice compared to healthy mice with fewer gammadelta-T cells localizing into the spleens of tumor-bearing mice. Finally, in both syngeneic (4T1) and xenogeneic (2Lmp) models of breast cancer, we demonstrate that adoptively transferred gammadelta-T cells are both effective against breast cancer and are otherwise well-tolerated by treated animals. These findings provide a strong preclinical rationale for using ex vivo expanded adoptively transferred gammadelta-T cells as a form of cell-based immunotherapy for the treatment of breast cancer. Additionally, these studies establish that clinically applicable methods for radiolabeling gammadelta-T cells allows for the tracking of adoptively transferred gammadelta-T cells in tumor-bearing hosts. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/19763820 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8939
- Author
-
- Author
:
Kim, Jae-Beom; Urban, Konnie; Cochran, Edward; Lee, Steve; Ang, Angel; Rice, Bradley; Bata, Adam; Campbell, Kenneth; Coffee, Richard; Gorodinsky, Alex; Lu, Zhan; Zhou, He; Kishimoto, Takashi Kei; Lassota, Peter - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
PloS one - Products
:
- Volume
:
5 - Issue
:
2 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
4T1-luc2; Animals; Bicuculline; Bioware; Cell Line, Tumor; Diagnostic Imaging; Female; Genetic Vectors; Lentivirus; Luciferases; Luminescent Measurements; Lung Neoplasms; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Transplantation; Neoplasms; Sensitivity and Specificity; Time Factors; Transfection; Tumor Burden - Abstract
:
Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/20186331 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8938
- Author
-
- Author
:
Kosaka, Nobuyoshi; Iguchi, Haruhisa; Yoshioka, Yusuke; Takeshita, Fumitaka; Matsuki, Yasushi; Ochiya, Takahiro - Title
:
- Type
:
Journal Article - Year
:
2010 - Publication
:
The Journal of biological chemistry - Products
:
- Volume
:
285 - Issue
:
23 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
Aniline Compounds; Animals; Benzylidene Compounds; Biological Transport; Bioware; Cercopithecus aethiops; COS Cells; Culture Media, Conditioned; Exosomes; Gene Silencing; Humans; MicroRNAs; Neoplasms; PC-3M-luc; RNA Interference; RNA, Small Interfering; Sphingomyelin Phosphodiesterase; Tumor Markers, Biological - Abstract
:
The existence of circulating microRNAs (miRNAs) in the blood of cancer patients has raised the possibility that miRNAs may serve as a novel diagnostic marker. However, the secretory mechanism and biological function of extracellular miRNAs remain unclear. Here, we show that miRNAs are released through a ceramide-dependent secretory machinery and that the secretory miRNAs are transferable and functional in the recipient cells. Ceramide, whose biosynthesis is regulated by neutral sphingomyelinase 2 (nSMase2), triggers secretion of small membrane vesicles called exosomes. The decreased activity of nSMase2 with a chemical inhibitor, GW4869, and a specific small interfering RNA resulted in the reduced secretion of miRNAs. Complementarily, overexpression of nSMase2 increased extracellular amounts of miRNAs. We also revealed that the endosomal sorting complex required for transport system is unnecessary for the release of miRNAs. Furthermore, a tumor-suppressive miRNA secreted via this pathway was transported between cells and exerted gene silencing in the recipient cells, thereby leading to cell growth inhibition. Our findings shed a ray of light on the physiological relevance of secretory miRNAs. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/20353945 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8946
- Author
-
- Author
:
N/A - Title
:
- Type
:
Journal Article - Year
:
2009 - Publication
:
Clinical & experimental metastasis - Products
:
- Volume
:
26 - Issue
:
7 - Page Numbers
:
N/A - Research Area : N/A
- Keywords
:
4T1-luc2; Animals; Bioware; Cell Line, Tumor; Disease Models, Animal; DNA-Binding Proteins; Female; Flow Cytometry; Killer Cells, Natural; Lung Neoplasms; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Mice, Knockout; Mice, SCID; Neoplasm Metastasis; Rats - Abstract
:
The occurrence of metastases is a critical determinant of the prognosis for breast cancer patients. Effective treatment of breast cancer metastases is hampered by a poor understanding of the mechanisms involved in the formation of these secondary tumor deposits. To study the processes of metastasis, valid in vivo tumor metastasis models are required. Here, we show that increased expression of the EGF receptor in the MTLn3 rat mammary tumor cell-line is essential for efficient lung metastasis formation in the Rag mouse model. EGFR expression resulted in delayed orthotopic tumor growth but at the same time strongly enhanced intravasation and lung metastasis. Previously, we demonstrated the critical role of NK cells in a lung metastasis model using MTLn3 cells in syngenic F344 rats. However, this model is incompatible with human EGFR. Using the highly metastatic EGFR-overexpressing MTLn3 cell-line, we report that only Rag2(-/-)gammac(-/-) mice, which lack NK cells, allow efficient lung metastasis from primary tumors in the mammary gland. In contrast, in nude and SCID mice, the remaining innate immune cells reduce MTLn3 lung metastasis formation. Furthermore, we confirm this finding with the orthotopic transplantation of the 4T1 mouse mammary tumor cell-line. Thus, we have established an improved in vivo model using a Rag2(-/-) gammac(-/-) mouse strain together with MTLn3 cells that have increased levels of the EGF receptor, which enables us to study EGFR-dependent tumor cell autonomous mechanisms underlying lung metastasis formation. This improved model can be used for drug target validation and development of new therapeutic strategies against breast cancer metastasis formation. - URL
:
http://www.ncbi.nlm.nih.gov/pubmed/19466569 - Call Number
:
PKI @ catherine.lautenschlager @ - Serial
:
8940
- Author