1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

311–320 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Mumprecht, V.; Honer, M.; Vigl, B.; Proulx, S. T.; Trachsel, E.; Kaspar, M.; Banziger-Tobler, N. E.; Schibli, R.; Neri, D.; Detmar, M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer Res
      6. Products :
      7. Volume :
        70
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals, B16-F10-luc2, B16F10-luc2; Antibodies, Monoclonal/diagnostic use/immunology; *Diagnostic Imaging; Female; Fluorodeoxyglucose F18/diagnostic use; Glycoproteins/*immunology; Humans; Inflammation/*complications/immunology/pathology; Iodine Radioisotopes/diagnostic use/pharmacokinetics; Luminescent Measurements; Lymph Nodes/immunology/pathology/*radionuclide imaging; *Lymphangiogenesis; Lymphatic Metastasis; Melanoma, Experimental/*complications/immunology/pathology; Mice; Mice, Inbred C57BL; Mice, Transgenic; *Positron-Emission Tomography; Prognosis; Radiopharmaceuticals/diagnostic use; Skin/metabolism; Tissue Distribution; Vascular Endothelial Growth Factor C/metabolism; Vascular Endothelial Growth Factor Receptor-3/immunology
      12. Abstract :
        Metastasis to regional lymph nodes (LN) is a prognostic indicator for cancer progression. There is a great demand for sensitive and noninvasive methods to detect metastasis to LNs. Whereas conventional in vivo imaging approaches have focused on the detection of cancer cells, lymphangiogenesis within tumor-draining LNs might be the earliest sign of metastasis. In mouse models of LN lymphangiogenesis, we found that systemically injected antibodies to lymphatic epitopes accumulated in the lymphatic vasculature in tissues and LNs. Using a (124)I-labeled antibody against the lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), we imaged, for the first time, inflammation- and tumor-draining LNs with expanded lymphatic networks in vivo by positron emission tomography (PET). Anti-LYVE-1 immuno-PET enabled visualization of lymphatic vessel expansion in LNs bearing metastases that were not detected by [(18)F]fluorodeoxyglucose-PET, which is clinically applied to detect cancer metastases. Immuno-PET with lymphatic-specific antibodies may open up new avenues for the early detection of metastasis, and the images obtained might be used as biomarkers for the progression of diseases associated with lymphangiogenesis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20978206
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10349
      1. Author :
        Nahrendorf, M.; Keliher, E.; Marinelli, B.; Waterman, P.; Feruglio, P. F.; Fexon, L.; Pivovarov, M.; Swirski, F. K.; Pittet, M. J.; Vinegoni, C.; Weissleder, R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Proc Natl Acad Sci U S A
      6. Products :
      7. Volume :
        107
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Flow Cytometry; Fluorescent Dyes/*diagnostic use; Image Processing, Computer-Assisted/methods; Mice; Mice, Inbred C57BL; Nanoparticles/*diagnostic use; Neoplasms/*diagnosis; Positron-Emission Tomography/*methods; Tomography, X-Ray Computed/*methods
      12. Abstract :
        Fusion imaging of radionuclide-based molecular (PET) and structural data [x-ray computed tomography (CT)] has been firmly established. Here we show that optical measurements [fluorescence-mediated tomography (FMT)] show exquisite congruence to radionuclide measurements and that information can be seamlessly integrated and visualized. Using biocompatible nanoparticles as a generic platform (containing a (18)F isotope and a far red fluorochrome), we show good correlations between FMT and PET in probe concentration (r(2) > 0.99) and spatial signal distribution (r(2) > 0.85). Using a mouse model of cancer and different imaging probes to measure tumoral proteases, macrophage content and integrin expression simultaneously, we demonstrate the distinct tumoral locations of probes in multiple channels in vivo. The findings also suggest that FMT can serve as a surrogate modality for the screening and development of radionuclide-based imaging agents.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20385821
      14. Call Number :
        PKI @ kd.modi @ 21
      15. Serial :
        10375
      1. Author :
        Nakayama, H.; Kawase, T.; Okuda, K.; Wolff, L. F.; Yoshie, H.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Acta Radiol
      6. Products :
      7. Volume :
        52
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        OsteoSense,, Animals; Bone Neoplasms/*pathology/physiopathology; Calcification, Physiologic/*physiology; Diphosphonates/diagnostic use; Feasibility Studies; Inositol/analogs & derivatives/diagnostic use; Mice; Mice, Hairless; Osteosarcoma/*pathology/physiopathology; Radiopharmaceuticals/diagnostic use; Spectroscopy, Near-Infrared/*methods; Technetium Tc 99m Medronate/analogs & derivatives/diagnostic use; Transplantation, Heterologous
      12. Abstract :
        BACKGROUND: In a previous study using a rodent osteosarcoma-grafted rat model, in which cell-dependent mineralization was previously demonstrated to proportionally increase with growth, we performed a quantitative analysis of mineral deposit formation using (99m)Tc-HMDP and found some weaknesses, such as longer acquisition time and narrower dynamic ranges (i.e. images easily saturated). The recently developed near-infrared (NIR) optical imaging technique is expected to non-invasively evaluate changes in living small animals in a quantitative manner. PURPOSE: To test the feasibility of NIR imaging with a dual-channel system as a better alternative for bone scintigraphy by quantitatively evaluating mineralization along with the growth of osteosarcoma lesions in a mouse-xenograft model. MATERIAL AND METHODS: The gross volume and mineralization of osteosarcoma lesions were evaluated in living mice simultaneously with dual-channels by NIR dye-labeled probes, 2-deoxyglucose (DG) and pamidronate (OS), respectively. To verify these quantitative data, retrieved osteosarcoma lesions were then subjected to ex-vivo imaging, weighing under wet conditions, microfocus-computed tomography (muCT) analysis, and histopathological examination. RESULTS: Because of less scattering and no anatomical overlapping, as generally shown, specific fluorescence signals targeted to the osteosarcoma lesions could be determined clearly by ex-vivo imaging. These data were well positively correlated with the in-vivo imaging data (r > 0.8, P < 0.02). Other good to excellent correlations (r > 0.8, P < 0.02) were observed between DG accumulation and tumor gross volume and between OS accumulation and mineralization volume. CONCLUSION: This in-vivo NIR imaging technique using DG and OS is sensitive to the level to simultaneously detect and quantitatively evaluate the growth and mineralization occuring in this type of osteosarcoma lesions of living mice without either invasion or sacrifice. By possible mutual complementation, this dual imaging system might be useful for accurate diagnosis even in the presence of overlapping tissues.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21969703
      14. Call Number :
        PKI @ kd.modi @ 7
      15. Serial :
        10472
      1. Author :
        Napp, J.; Mathejczyk, J.E.; Alves, F.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Pediatric Radiology
      6. Products :
      7. Volume :
        41
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        AngioSense 680; Cancer; glioblastoma xenograft; mice; tumor vascularization
      12. Abstract :
        To obtain information on the occurrence and location of molecular events as well as to track target-specific probes such as antibodies or peptides, drugs or even cells non-invasively over time, optical imaging (OI) technologies are increasingly applied. Although OI strongly contributes to the advances made in preclinical research, it is so far, with the exception of optical coherence tomography (OCT), only very sparingly applied in clinical settings. Nevertheless, as OI technologies evolve and improve continuously and represent relatively inexpensive and harmful methods, their implementation as clinical tools for the assessment of children disease is increasing. This review focuses on the current preclinical and clinical applications as well as on the future potential of OI in the clinical routine. Herein, we summarize the development of different fluorescence and bioluminescence imaging techniques for microscopic and macroscopic visualization of microstructures and biological processes. In addition, we discuss advantages and limitations of optical probes with distinct mechanisms of target-detection as well as of different bioluminescent reporter systems. Particular attention has been given to the use of near-infrared (NIR) fluorescent probes enabling observation of molecular events in deeper tissue.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21221568
      14. Call Number :
        PKI @ user @ 8559
      15. Serial :
        4796
      1. Author :
        Neal K. Devaraj; Edmund J. Keliher; Greg M. Thurber; Matthias Nahrendorf; Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Bioconjugate Chemistry
      6. Products :
      7. Volume :
        20
      8. Issue :
        2
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        in vivo imaging; fluorescence molecular tomography
      12. Abstract :
        We report the synthesis and in vivo characterization of an 18F modified trimodal nanoparticle (18F-CLIO). This particle consists of cross-linked dextran held together in core-shell formation by a superparamagnetic iron oxide core and functionalized with the radionuclide 18F in high yield via “click” chemistry. The particle can be detected with positron emission tomography, fluorescence molecular tomography, and magnetic resonance imaging. The presence of 18F dramatically lowers the detection threshold of the nanoparticles, while the facile conjugation chemistry provides a simple platform for rapid and efficient nanoparticle labeling.
      13. URL :
        http://pubs.acs.org/doi/abs/10.1021/bc8004649
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4498
      1. Author :
        Neal K. Devaraj; Ralph Weissleder; Scott A. Hilderbrand
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Bioconjugate Chemistry
      6. Products :
      7. Volume :
        19
      8. Issue :
        12
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        in vivo labelling; breast cancer; in vivo imaging
      12. Abstract :
        Bioorthogonal tetrazine cycloadditions have been applied to live cell labeling. Tetrazines react irreversibly with the strained dienophile norbornene forming dihydropyrazine products and dinitrogen. The reaction is high yielding, selective, and fast in aqueous media. Her2/neu receptors on live human breast cancer cells were targeted with a monoclonal antibody modified with a norbornene. Tetrazines conjugated to a near-infrared fluorochrome selectively and rapidly label the pretargeted antibody in the presence of serum. These findings indicate that this chemistry is suitable for in vitro labeling experiments, and suggests that it may prove a useful strategy for in vivo pretargeted imaging under numerous modalities.
      13. URL :
        http://pubs.acs.org/doi/abs/10.1021/bc8004446
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4499
      1. Author :
        Neal, Robert E, 2nd; Singh, Ravi; Hatcher, Heather C; Kock, Nancy D; Torti, Suzy V; Davalos, Rafael V
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Breast cancer research and treatment
      6. Products :
      7. Volume :
        123
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Cell Line, Tumor; Electrochemotherapy; Electrodes; Female; Humans; Mammary Neoplasms, Experimental; MDA-MB-231-D3H1 cells; Mice; Mice, Nude; Needles; Xenograft Model Antitumor Assays
      12. Abstract :
        Irreversible electroporation (IRE) is a therapeutic technology for the ablation of soft tissues using electrodes to deliver intense but short electric pulses across a cell membrane, creating nanopores that lead to cell death. This phenomenon only affects the cell membrane, leaving the extracellular matrix and sensitive structures intact, making it a promising technique for the treatment many types of tumors. In this paper, we present the first in vivo study to achieve tumor regression using a translatable, clinically relevant single needle electrode for treatment administration. Numerical models of the electric field distribution for the protocol used suggest that a 1000 V/cm field threshold is sufficient to treat a tumor, and that the electric field distribution will slightly decrease if the same protocol were used on a tumor deep seated within a human breast. Tumor regression was observed in 5 out of 7 MDA-MB231 human mammary tumors orthotopically implanted in female Nu/Nu mice, with continued growth in controls.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20191380
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8988
Back to Search
Select All  |  Deselect All