1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

361–370 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

  •  
  • Records
      1. Author :
        Proulx, S. T.; Luciani, P.; Derzsi, S.; Rinderknecht, M.; Mumprecht, V.; Leroux, J. C.; Detmar, M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer Res
      6. Products :
      7. Volume :
        70
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals, B16-F10-luc2, B16F10-luc2; Coloring Agents/administration & dosage/*diagnostic use; Indocyanine Green/administration & dosage/*diagnostic use; Injections, Intradermal; Liposomes/administration & dosage; Lymphatic Metastasis; Lymphatic Vessels/metabolism/*pathology; Melanoma, Experimental/blood supply/metabolism/*pathology; Mice; Mice, Inbred C57BL; Vascular Endothelial Growth Factor C/biosynthesis
      12. Abstract :
        Lymphatic vessels play a major role in cancer progression and in postsurgical lymphedema, and several new therapeutic approaches targeting lymphatics are currently being developed. Thus, there is a critical need for quantitative imaging methods to measure lymphatic flow. Indocyanine green (ICG) has been used for optical imaging of the lymphatic system, but it is unstable in solution and may rapidly enter venous capillaries after local injection. We developed a novel liposomal formulation of ICG (LP-ICG), resulting in vastly improved stability in solution and an increased fluorescence signal with a shift toward longer wavelength absorption and emission. When injected intradermally to mice, LP-ICG was specifically taken up by lymphatic vessels and allowed improved visualization of deep lymph nodes. In a genetic mouse model of lymphatic dysfunction, injection of LP-ICG showed no enhancement of draining lymph nodes and slower clearance from the injection site. In mice bearing B16 luciferase-expressing melanomas expressing vascular endothelial growth factor-C (VEGF-C), sequential near-IR imaging of intradermally injected LP-ICG enabled quantification of lymphatic flow. Increased flow through draining lymph nodes was observed in mice bearing VEGF-C-expressing tumors without metastases, whereas a decreased flow pattern was seen in mice with a higher lymph node tumor burden. This new method will likely facilitate quantitative studies of lymphatic function in preclinical investigations and may also have potential for imaging of lymphedema or improved sentinel lymph detection in cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20823159
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10350
      1. Author :
        Qamri, Zahida; Preet, Anju; Nasser, Mohd W; Bass, Caroline E; Leone, Gustavo; Barsky, Sanford H; Ganju, Ramesh K
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Molecular cancer therapeutics
      6. Products :
      7. Volume :
        8
      8. Issue :
        11
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Apoptosis; Benzoxazines; Bioware; Breast Neoplasms; Cannabinoids; Cell Cycle; Cell Growth Processes; Cell Line, Tumor; Cell Movement; Cyclooxygenase 2; Dinoprostone; Female; Humans; Immunohistochemistry; Lung Neoplasms; Male; Mammary Neoplasms, Experimental; MDA-MB-231-D3H2LN cells; Mice; Mice, Inbred C3H; Mice, SCID; Mice, Transgenic; Microscopy, Confocal; Morpholines; Naphthalenes; Neoplasm Metastasis; Neovascularization, Pathologic; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; RNA, Small Interfering; Signal Transduction; Transfection; Xenograft Model Antitumor Assays
      12. Abstract :
        Cannabinoids have been reported to possess antitumorogenic activity. Not much is known, however, about the effects and mechanism of action of synthetic nonpsychotic cannabinoids on breast cancer growth and metastasis. We have shown that the cannabinoid receptors CB1 and CB2 are overexpressed in primary human breast tumors compared with normal breast tissue. We have also observed that the breast cancer cell lines MDA-MB231, MDA-MB231-luc, and MDA-MB468 express CB1 and CB2 receptors. Furthermore, we have shown that the CB2 synthetic agonist JWH-133 and the CB1 and CB2 agonist WIN-55,212-2 inhibit cell proliferation and migration under in vitro conditions. These results were confirmed in vivo in various mouse model systems. Mice treated with JWH-133 or WIN-55,212-2 showed a 40% to 50% reduction in tumor growth and a 65% to 80% reduction in lung metastasis. These effects were reversed by CB1 and CB2 antagonists AM 251 and SR144528, respectively, suggesting involvement of CB1 and CB2 receptors. In addition, the CB2 agonist JWH-133 was shown to delay and reduce mammary gland tumors in the polyoma middle T oncoprotein (PyMT) transgenic mouse model system. Upon further elucidation, we observed that JWH-133 and WIN-55,212-2 mediate the breast tumor-suppressive effects via a coordinated regulation of cyclooxygenase-2/prostaglandin E2 signaling pathways and induction of apoptosis. These results indicate that CB1 and CB2 receptors could be used to develop novel therapeutic strategies against breast cancer growth and metastasis.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19887554
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8953
      1. Author :
        Qingbei Zhang; Meng Yang; Jikun Shen; Lynnette M. Geerhold; Robert M Hoffman; H. Rosie Xing
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        International Journal of Cancer
      6. Products :
      7. Volume :
        126
      8. Issue :
        11
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        metastasis; hemotogenous spread; prostate cancer; GFP; in vivo imaging
      12. Abstract :
        Metastasis is primarily responsible for the morbidity and mortality of cancer. Improved therapeutic outcomes and prognosis depend on improved understanding of mechanisms regulating the establishment of early metastasis. In this study, use of green fluorescent protein (GFP)-expressing PC-3 orthotopic model of human prostate cancer and two complementary fluorescence in vivo imaging systems (Olympus OV100 and VisEn FMT) allowed for the first time real-time characterization of cancer cell-endothelium interactions during spontaneous metastatic colonization of the liver and lung in live mice. We observed that prior to the detection of extra-vascular metastases, GFP-expressing PC-3 cancer cells resided initially inside the blood vessels of the liver and the lung, where they proliferated and expressed Ki-67 and exhibited matrix metalloprotenases (MMP) activity. Thus, the intravascular cancer cells produced their own microenvironment, where they could continue to proliferate. Extravasation occurred earlier in the lung than in the liver. Our results demonstrate that the intravascular microenvironment is a critical staging area for the development of metastasis that later can invade the parenchyma. Intravascular tumor cells may represent a therapeutic target to inhibit the development of extravascular metastases. Therefore, this imageable model of intravascular metastasis may be used for evaluation of novel anti-metastatic agents.
      13. URL :
        http://onlinelibrary.wiley.com/doi/10.1002/ijc.24979/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4493
      1. Author :
        Quintela-Fandino, Miguel; Arpaia, Enrico; Brenner, Dirk; Goh, Theo; Yeung, Faith Au; Blaser, Heiko; Alexandrova, Roumiana; Lind, Evan F; Tusche, Mike W; Wakeham, Andrew; Ohashi, Pamela S; Mak, Tak W
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Proceedings of the National Academy of Sciences of the United States of America
      6. Products :
      7. Volume :
        107
      8. Issue :
        6
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Actins; Animals; B16-F10-luc-G5; Bioware; Breast Neoplasms; Cell Line, Tumor; Cell Movement; Cofilin 1; Cytoskeleton; Female; Humans; Immunoblotting; Immunoprecipitation; Male; Mammary Neoplasms, Experimental; MDA-MB-231-D3H2LN cells; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Neoplasm Invasiveness; Neoplasm Metastasis; Phosphorylation; Protein Binding; Protein Kinases; Protein Phosphatase 2; Protein-Serine-Threonine Kinases; RNA Interference; Transplantation, Heterologous
      12. Abstract :
        Metastasis leads to the death of most cancer patients, and basal breast cancer is the most aggressive breast tumor type. Metastasis involves a complex cell migration process dependent on cytoskeletal remodeling such that targeting such remodeling in tumor cells could be clinically beneficial. Here we show that Hormonally Up-regulated Neu-associated Kinase (HUNK) is dramatically down-regulated in tumor samples and cell lines derived from basal breast cancers. Reconstitution of HUNK expression in basal breast cancer cell lines blocked actin polymerization and reduced cell motility, resulting in decreased metastases in two in vivo murine cancer models. Mechanistically, HUNK overexpression sustained the constitutive phosphorylation and inactivation of cofilin-1 (CFL-1), thereby blocking the incorporation of new actin monomers into actin filaments. HUNK reconstitution in basal breast cancer cell lines prevented protein phosphatase 2-A (PP2A), a phosphatase putatively acting on CFL-1, from binding to CFL-1. Our investigation of HUNK suggests that the interaction between PP2A and CFL-1 may be a target for antimetastasis therapy, particularly for basal breast cancers.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20133759
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8951
      1. Author :
        Ragas, X.; Sanchez-Garcia, D.; Ruiz-Gonzalez, R.; Dai, T.; Agut, M.; Hamblin, M. R.; Nonell, S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        J Med Chem
      6. Products :
      7. Volume :
        53
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Animals; Bacterial Infections/*drug therapy; Burns/drug therapy/microbiology; Candida/drug effects; Cations; Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects; Male; Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; *Photochemotherapy; Photosensitizing Agents/*chemical synthesis/chemistry/pharmacology; Porphyrins/*chemical synthesis/chemistry/pharmacology; Solubility; Staphylococcal Infections/drug therapy/microbiology; Structure-Activity Relationship
      12. Abstract :
        Structures of typical photosensitizers used in antimicrobial photodynamic therapy are based on porphyrins, phthalocyanines, and phenothiazinium salts, with cationic charges at physiological pH values. However, derivatives of the porphycene macrocycle (a structural isomer of porphyrin) have barely been investigated as antimicrobial agents. Therefore, we report the synthesis of the first tricationic water-soluble porphycene and its basic photochemical properties. We successfully tested it for in vitro photoinactivation of different Gram-positive and Gram-negative bacteria, as well as a fungal species (Candida) in a drug-dose and light-dose dependent manner. We also used the cationic porphycene in vivo to treat an infection model comprising mouse third degree burns infected with a bioluminescent methicillin-resistant Staphylococcus aureus strain. There was a 2.6-log(10) reduction (p < 0.001) of the bacterial bioluminescence for the PDT-treated group after irradiation with 180 J.cm(-2) of red light.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20936792
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10555
      1. Author :
        Ragas, X.; Sanchez-Garcia, D.; Ruiz-Gonzalez, R.; Dai, T.; Agut, M.; Hamblin, M. R.; Nonell, S.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        J Med Chem
      6. Products :
      7. Volume :
        53
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen31, Xen 31, MRSA, S. aureus, IVIS, Bioluminescence, Animals; Bacterial Infections/*drug therapy; Burns/drug therapy/microbiology; Candida/drug effects; Cations; Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects; Male; Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; *Photochemotherapy; Photosensitizing Agents/*chemical synthesis/chemistry/pharmacology; Porphyrins/*chemical synthesis/chemistry/pharmacology; Solubility; Staphylococcal Infections/drug therapy/microbiology; Structure-Activity Relationship
      12. Abstract :
        Structures of typical photosensitizers used in antimicrobial photodynamic therapy are based on porphyrins, phthalocyanines, and phenothiazinium salts, with cationic charges at physiological pH values. However, derivatives of the porphycene macrocycle (a structural isomer of porphyrin) have barely been investigated as antimicrobial agents. Therefore, we report the synthesis of the first tricationic water-soluble porphycene and its basic photochemical properties. We successfully tested it for in vitro photoinactivation of different Gram-positive and Gram-negative bacteria, as well as a fungal species (Candida) in a drug-dose and light-dose dependent manner. We also used the cationic porphycene in vivo to treat an infection model comprising mouse third degree burns infected with a bioluminescent methicillin-resistant Staphylococcus aureus strain. There was a 2.6-log(10) reduction (p < 0.001) of the bacterial bioluminescence for the PDT-treated group after irradiation with 180 J.cm(-2) of red light.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20936792
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10556
      1. Author :
        Rahul A. Sheth, Marco Maricevich and Umar Mahmood
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Atherosclerosis
      6. Products :
      7. Volume :
        212
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        Cardiovascular Research
      11. Keywords :
        Molecular imaging; Abdominal aortic aneurysm; Optical imaging; Pre-clinical; Endovascular imaging; Matrix metalloproteinase; in vivo imaging; MMPSense
      12. Abstract :
        Objectives: We present a method to quantify the inflammatory processes that drive abdominal aortic aneurysm (AAA) development that may help predict the rate of growth and thus guide medical and surgical management. We use an in vivo optical molecular imaging approach to quantify protease activity within the walls of AAAs in a rodent model.

        Methods: AAAs were generated in mice by topical application of calcium chloride, followed by the administration of the MMP inhibitor doxycycline for 3 months. After this time period, an enzyme-activatable optical molecular imaging agent sensitive to MMP activity was administered, and MMP proteolytic activity was measured in vivo. Histology and in situ zymography were performed for validation. AAAs were also generated in rats, and MMP activity within the walls of the AAAs was also quantified endovascularly.

        Results: A dose-dependent response of AAA growth rate to doxycycline administration was demonstrated, with high doses of the drug resulting in nearly complete suppression of aneurysm formation. There was a direct relationship between the rate of aneurysmal growth and measured MMP activity, with a linear best-fit well approximating the relationship. We additionally performed endovascular imaging of AAAs in rats and demonstrated a similar suppression of intramural MMP activity following doxycycline administration.

        Conclusions: We present an in vivo evaluation of MMP activity within the walls of AAAs in rodents and show a direct, linear relationship between proteolytic activity and aneurysmal growth. We also illustrate that this functional imaging method can be performed endovascularly, demonstrating potential pre-clinical and clinical applications.
      13. URL :
        http://www.atherosclerosis-journal.com/article/S0021-9150(10)00390-4/abstract
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4550
      1. Author :
        Rahul Anil Sheth; Rabi Upadhyay; Lars Stangenberg; Rucha Sheth; Ralph Weissleder; Umar Mahmood
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Gynecologic Oncology
      6. Products :
      7. Volume :
        112
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Ovarian cancer; Molecular imaging; Intraoperative imaging; Fluorescence imaging
      12. Abstract :
        OBJECTIVES: Cytoreductive surgery is a cornerstone of therapy in metastatic ovarian cancer. While conventional white light (WL) inspection detects many obvious tumor foci, careful histologic comparison has shown considerable miss rates for smaller foci. The goal of this study was to compare tumor detection using WL versus near infrared (NIR) imaging with a protease activatable probe, as well as to evaluate the ability to quantify NIR fluorescence using a novel quantitative optical imaging system.

        METHODS: A murine model for peritoneal carcinomatosis was generated and metastatic foci were imaged using WL and NIR imaging following the i.v. administration of the protease activatable probe ProSense750. The presence of tumor was confirmed by histology. Additionally, the ability to account for variations in fluorescence signal intensity due to changes in distance between the catheter and target lesion during laparoscopic procedures was evaluated.

        RESULTS: NIR imaging with a ProSense750 significantly improved upon the target-to-background ratios (TBRs) of tumor foci in comparison to WL imaging (minimum improvement was approximately 3.5 fold). Based on 52 histologically validated samples, the sensitivity for WL imaging was 69%, while the sensitivity for NIR imaging was 100%. The effects of intraoperative distance changes upon fluorescence intensity were corrected in realtime, resulting in a decrease from 89% to 5% in signal variance during fluorescence laparoscopy.

        CONCLUSIONS: With its molecular specificity, low background autofluorescence, high TBRs, and quantitative signal, optical imaging with NIR protease activatable probes greatly improves upon the intraoperative detection of ovarian cancer metastases.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19135233?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4497
      1. Author :
        Rahul Anil Sheth; Umar Mahmood
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        American Journal of Physiology: Gastrointestinal and Liver Physiology
      6. Products :
      7. Volume :
        299
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Colorectal cancer; optical imaging; molecular imaging; cancer genetics
      12. Abstract :
        Colorectal cancer remains a major cause of morbidity and mortality in the United States. The advent of molecular therapies targeted against specific, stereotyped cellular mutations that occur in this disease has ushered in new hope for treatment options. However, key questions regarding the optimal dosing schedules, dosing duration, and patient selection remain unanswered. In this review, we describe how recent advances in molecular imaging, specifically optical molecular imaging with fluorescent probes, offer potential solutions to these questions and may play a key role in improving outcomes. We begin with an overview of optical molecular imaging, including a discussion on the various methods of design for fluorescent probes and the clinically relevant imaging systems that have been built to image them. We then focus on the relevance of optical molecular imaging to colorectal cancer. We review the most recent data on how this imaging modality has been applied to the measurement of treatment efficacy for currently available as well as some as-of-yet developmental molecularly targeted therapies in animal studies. We then conclude with a discussion on how this imaging approach has already begun to be translated clinically for human use.
      13. URL :
        http://ajpgi.physiology.org/cgi/content/abstract/ajpgi.00195.2010v1
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4484
      1. Author :
        Rambow-Larsen, Amy A; Rajashekara, Gireesh; Petersen, Erik; Splitter, Gary
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Journal of bacteriology
      6. Products :
      7. Volume :
        190
      8. Issue :
        9
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Amino Acid Sequence; Animals; Bioware; Brucella melitensis; Brucellosis; Disease Models, Animal; Flagella; Gene Deletion; Gene Expression Regulation, Bacterial; Interferon Regulatory Factor-1; Macrophages; Mice; Mice, Mutant Strains; Molecular Sequence Data; Oligonucleotide Array Sequence Analysis; pXen-13; Quorum Sensing; Repressor Proteins; Trans-Activators; Virulence Factors
      12. Abstract :
        Brucella melitensis is an intracellular pathogen that establishes a replicative niche within macrophages. While the intracellular lifestyle of Brucella is poorly understood and few virulence factors have been identified, components of a quorum-sensing pathway in Brucella have recently been identified. The LuxR-type regulatory protein, VjbR, and an N-acylhomoserine lactone signaling molecule are both involved in regulating expression of the virB-encoded type IV secretion system. We have identified a second LuxR-type regulatory protein (BlxR) in Brucella. Microarray analysis of a blxR mutant suggests that BlxR regulates the expression of a number of genes, including those encoding the type IV secretion system and flagella. Confirming these results, deletion of blxR in B. melitensis reduced the transcriptional activities of promoters for the virB operon, flagellar genes, and another putative virulence factor gene, bopA. Furthermore, our data suggested that both BlxR and VjbR are positively autoregulated and cross-regulate the expression of each other. The blxR deletion strain exhibited reduced growth in macrophages, similar to that observed for a vjbR deletion strain. However, unlike the vjbR deletion, the blxR deletion did not fully attenuate virulence in mice. More strikingly, bioluminescent imaging revealed that dissemination of the blxR mutant was similar to that of wild-type B. melitensis, while the vjbR mutant was defective for systemic spread in IRF-1(-/-) mice, suggesting that these regulators are not functionally redundant but that they converge in a common pathway regulating bacterial processes.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18310341
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9030
Back to Search
Select All  |  Deselect All