1. Resources
  2. Citations Library

Headers act as filters

  • Records
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Annals of the New York Academy of Sciences
      6. Products :
      7. Volume :
        1192
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Biofilms; Bioware; Bone Density Conservation Agents; Chronic Disease; Cytokines; Drug Evaluation, Preclinical; Humans; Immunity; Incidence; Jaw Diseases; Mice; Neovascularization, Physiologic; Osteoclasts; Osteomyelitis; Osteonecrosis; Staphylococcal Infections; Xen29
      12. Abstract :
        The effects of antiresorptive agents (e.g., alendronate [Aln], osteoprotegerin [OPG]) on bone infection are unknown. Thus, their effects on implant-associated osteomyelitis (OM) were investigated in mice using PBS (placebo), gentamycin, and etanercept (TNFR:Fc) controls. None of the drugs affected humoral immunity, angiogenesis, or chronic infection. However, the significant (P < 0.05 vs. PBS) inhibition of cortical osteolysis and decreased draining lymph node size in Aln- and OPG-treated mice was associated with a significant (P < 0.05) increase in the incidence of high-grade infections during the establishment of OM. In contrast, the high-grade infections in TNFR:Fc-treated mice were associated with immunosuppression, as evidenced by the absence of granulomas and presence of Gram(+) biofilm in the bone marrow. Collectively, these findings indicate that although antiresorptive agents do not exacerbate chronic OM, they can increase the bacterial load during early infection by decreasing lymphatic drainage and preventing the removal of necrotic bone that harbors the bacteria.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20392222
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9034
      1. Author :
        N/A
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Journal of orthopaedic research: official publication of the Orthopaedic Research Society
      6. Products :
      7. Volume :
        26
      8. Issue :
        1
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antibody Formation; Bacterial Proteins; Bioware; Disease Models, Animal; DNA, Bacterial; Endonucleases; Female; Mice; Mice, Inbred C57BL; Micrococcal Nuclease; Osteolysis; Osteomyelitis; Prosthesis-Related Infections; Reverse Transcriptase Polymerase Chain Reaction; Staphylococcal Infections; Staphylococcus aureus; Tibia; Xen29
      12. Abstract :
        Although osteomyelitis (OM) remains a serious problem in orthopedics, progress has been limited by the absence of an in vivo model that can quantify the bacterial load, metabolic activity of the bacteria over time, immunity, and osteolysis. To overcome these obstacles, we developed a murine model of implant-associated OM in which a stainless steel pin is coated with Staphylococcus aureus and implanted transcortically through the tibial metaphysis. X-ray and micro-CT demonstrated concomitant osteolysis and reactive bone formation, which was evident by day 7. Histology confirmed all the hallmarks of implant-associated OM, namely: osteolysis, sequestrum formation, and involucrum of Gram-positive bacteria inside a biofilm within necrotic bone. Serology revealed that mice mount a protective humoral response that commences with an IgM response after 1 week, and converts to a specific IgG2b response against specific S. aureus proteins by day 11 postinfection. Real-time quantitative PCR (RTQ-PCR) for the S. aureus specific nuc gene determined that the peak bacterial load occurs 11 days postinfection. This coincidence of decreasing bacterial load with the generation of specific antibodies is suggestive of protective humoral immunity. Longitudinal in vivo bioluminescent imaging (BLI) of luxA-E transformed S. aureus (Xen29) combined with nuc RTQ-PCR demonstrated the exponential growth phase of the bacteria immediately following infection that peaks on day 4, and is followed by the biofilm growth phase at a significantly lower metabolic rate (p < 0.05). Collectively, these studies demonstrate the first quantitative model of implant-associated OM that defines the kinetics of microbial growth, osteolysis, and humoral immunity following infection.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/17676625
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9047
      1. Author :
        Li, Min; Rigby, Kevin; Lai, Yuping; Nair, Vinod; Peschel, Andreas; Schittek, Birgit; Otto, Michael
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Antimicrobial agents and chemotherapy
      6. Products :
      7. Volume :
        53
      8. Issue :
        10
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Anti-Bacterial Agents; Bioware; Blotting, Southern; Chromatography, Thin Layer; Computational Biology; Cytochromes c; Genetic Complementation Test; Humans; Microscopy, Electron, Scanning; Microscopy, Immunoelectron; Mutagenesis; Peptides; Phospholipids; Polymerase Chain Reaction; Staphylococcus aureus; Xen36
      12. Abstract :
        Antimicrobial peptides (AMPs) form an important part of the innate host defense. In contrast to most AMPs, human dermcidin has an anionic net charge. To investigate whether bacteria have developed specific mechanisms of resistance to dermcidin, we screened for mutants of the leading human pathogen, Staphylococcus aureus, with altered resistance to dermcidin. To that end, we constructed a plasmid for use in mariner-based transposon mutagenesis and developed a high-throughput cell viability screening method based on luminescence. In a large screen, we did not find mutants with strongly increased susceptibility to dermcidin, indicating that S. aureus has no specific mechanism of resistance to this AMP. Furthermore, we detected a mutation in a gene of unknown function that resulted in significantly increased resistance to dermcidin. The mutant strain had an altered membrane phospholipid pattern and showed decreased binding of dermcidin to the bacterial surface, indicating that dermcidin interacts with membrane phospholipids. The mode of this interaction was direct, as shown by assays of dermcidin binding to phospholipid preparations, and specific, as the resistance to other AMPs was not affected. Our findings indicate that dermcidin has an exceptional value for the human innate host defense and lend support to the idea that it evolved to evade bacterial resistance mechanisms targeted at the cationic character of most AMPs. Moreover, they suggest that the antimicrobial activity of dermcidin is dependent on the interaction with the bacterial membrane and might thus assist with the determination of the yet unknown mode of action of this important human AMP.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19596877
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9983
      1. Author :
        Liang, H.; Ma, S. Y.; Mohammad, K.; Guise, T. A.; Balian, G.; Shen, F. H.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Spine (Phila Pa 1976)
      6. Products :
      7. Volume :
        36
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-D3H1, MDA-MB-231-luc-D3H1, IVIS, Bioware, Breast Cancer
      12. Abstract :
        STUDY DESIGN: In vivo experiments to develop a rat spine single metastasis model by using human breast cancer cells. OBJECTIVE: To study the survival and tumorigenesis of the human breast cancer cells after transplantation to vertebral body (VB) by intraosseous injection as a model for therapeutic studies of spine metastatic tumor. SUMMARY OF BACKGROUND DATA: VBs are the most common bones involved in the metastases of breast cancer. To develop experimental therapeutics requires an appropriate animal model. Moreover, it is also important to establish accurate and sensitive detection methods for the evaluation. METHODS: MDA-MB-231 human breast cancer cells were injected into 3-week-old female athymic rats. The tumorigenesis was assayed with quantitative in vivo bioluminescence (IVIS), microcomputed tomography (micro-CT), quantitative CT (qCT), micro position emission tomography (micro-PET), and histologic studies. RESULTS: A spine single metastasis model of human breast cancer was successfully developed in rats. The IVIS signal intensity from the cancer cells increased after 2 weeks. Signal from the tumor in spine can be detected by micro-PET at day 1. The signal intensity decreased after 1 week and then recovered and continually increased afterwards. Bone destruction was demonstrated in the qCT and micro-CT images. However, both qCT and micro-CT found that the bone density in the cancer cell-injected VB increased before the appearance of osteolysis. The growth of tumor and the reaction of bone in the VB were observed simultaneously by histology. CONCLUSION: A spine single metastasis model was developed by injection of human breast cancer cells into the VB of athymic rats. This is the first report of quantitative evaluation with micro-PET in a spine metastasis model. In addition, the detection of osteogenesis after the introduction of MDA-MB-231 cells in vivo is a novel observation.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21422981
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10515
      1. Author :
        Liao, A. H.; Li, Y. K.; Lee, W. J.; Wu, M. F.; Liu, H. L.; Kuo, M. L.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Ultrasound Med Biol
      6. Products :
      7. Volume :
        38
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        4T1-luc2, IVIS, Bioluminescence
      12. Abstract :
        The application of drug-loaded microbubbles (MBs) in combination with ultrasound (US), which results in an increase in capillary permeability at the site of US-sonication-induced MB destruction, may be an efficient method of localized drug delivery. This study investigated the mechanism underlying the US-mediated release of luciferin-loaded MBs through the blood vessels to targeted cells using an in vivo bioluminescence imaging (BLI) system. The luciferin-loaded MBs comprised an albumin shell with a diameter of 1234 +/- 394 nm (mean +/- SD) and contained 2.48 x 10(9) bubbles/mL; within each MB, the concentration of encapsulated luciferin was 1.48 x 10(-)(1)(0) mg/bubble. The loading efficiency of luciferin in MBs was only about 19.8%, while maintaining both the bioluminescence and acoustic properties. In vitro and in vivo BLI experiments were performed to evaluate the US-mediated release of luciferin-loaded MBs. For in vitro results, the increase in light emission of luciferin-loaded albumin-shelled MBs after destruction via US sonication (6.24 +/- 0.72 x 10(7) photons/s) was significantly higher than that in the luciferin-loaded albumin-shelled MBs (3.11 +/- 0.33 x 10(7) photons/s) (p < 0.05). The efficiency of the US-mediated release of luciferin-loaded MBs in 4T1-luc2 tumor-bearing mice was also estimated. The signal intensity of the tumor with US destruction at 3 W/cm(2) for 30 s was significantly higher than without US destruction at 3 (p = 0.025), 5 (p = 0.013), 7 (p = 0.012) and 10 (p = 0.032) min after injecting luciferin-loaded albumin-shelled MBs. The delivery efficiency was, thus, improved with US-mediated release, allowing reduction of the total injection dose of luciferin.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22929655
      14. Call Number :
        PKI @ kd.modi @ 8
      15. Serial :
        10481
      1. Author :
        Lim, E.; Modi, K.; Christensen, A.; Meganck, J.; Oldfield, S.; Zhang, N.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        J Vis Exp
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-D3H2Ln, IVIS, Bioluminescence, Animals; Bone Neoplasms/*secondary; Breast Neoplasms/*pathology; Cell Line, Tumor; Female; Humans; Luminescent Measurements/*methods; Mice; Mice, Nude; Neoplasm Metastasis; Neoplasm Transplantation; Tomography, X-Ray Computed/*methods; Transplantation, Heterologous
      12. Abstract :
        Following intracardiac delivery of MDA-MB-231-luc-D3H2LN cells to Nu/Nu mice, systemic metastases developed in the injected animals. Bioluminescence imaging using IVIS Spectrum was employed to monitor the distribution and development of the tumor cells following the delivery procedure including DLIT reconstruction to measure the tumor signal and its location. Development of metastatic lesions to the bone tissues triggers osteolytic activity and lesions to tibia and femur were evaluated longitudinally using micro CT. Imaging was performed using a Quantum FX micro CT system with fast imaging and low X-ray dose. The low radiation dose allows multiple imaging sessions to be performed with a cumulative X-ray dosage far below LD50. A mouse imaging shuttle device was used to sequentially image the mice with both IVIS Spectrum and Quantum FX achieving accurate animal positioning in both the bioluminescence and CT images. The optical and CT data sets were co-registered in 3-dimentions using the Living Image 4.1 software. This multi-mode approach allows close monitoring of tumor growth and development simultaneously with osteolytic activity.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21525842
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10416
      1. Author :
        Lim, Ed; Modi, Kshitij D; Kim, Jaebeom
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Journal of visualized experiments: JoVE
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        26
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        4T1-luc2; Animals; Bioware; Cell Line, Tumor; Female; Luciferases; Luminescent Measurements; Mammary Neoplasms, Experimental; Mice; Mice, Nude
      12. Abstract :
        4T1 mouse mammary tumor cells can be implanted sub-cutaneously in nu/nu mice to form palpable tumors in 15 to 20 days. This xenograft tumor model system is valuable for the pre-clinical in vivo evaluation of putative antitumor compounds. The 4T1 cell line has been engineered to constitutively express the firefly luciferase gene (luc2). When mice carrying 4T1-luc2 tumors are injected with Luciferin the tumors emit a visual light signal that can be monitored using a sensitive optical imaging system like the IVIS Spectrum. The photon flux from the tumor is proportional to the number of light emitting cells and the signal can be measured to monitor tumor growth and development. IVIS is calibrated to enable absolute quantitation of the bioluminescent signal and longitudinal studies can be performed over many months and over several orders of signal magnitude without compromising the quantitative result. Tumor growth can be monitored for several days by bioluminescence before the tumor size becomes palpable or measurable by traditional physical means. This rapid monitoring can provide insight into early events in tumor development or lead to shorter experimental procedures. Tumor cell death and necrosis due to hypoxia or drug treatment is indicated early by a reduction in the bioluminescent signal. This cell death might not be accompanied by a reduction in tumor size as measured by physical means. The ability to see early events in tumor necrosis has significant impact on the selection and development of therapeutic agents. Quantitative imaging of tumor growth using IVIS provides precise quantitation and accelerates the experimental process to generate results.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19404236
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        8941
      1. Author :
        Lin, S. A.; Patel, M.; Suresch, D.; Connolly, B.; Bao, B.; Groves, K.; Rajopadhye, M.; Peterson, J. D.; Klimas, M.; Sur, C.; Bednar, B.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Int J Mol Imaging
      6. Products :
      7. Volume :
        2012
      8. Issue :
        N/A
      9. Page Numbers :
        189254
      10. Research Area :
        N/A
      11. Keywords :
        FMT, Prosense, CatB, Cathepsin B, fluorescence imaing, tomography, microCT
      12. Abstract :
        Inflammation as a core pathological event of atherosclerotic lesions is associated with the secretion of cathepsin proteases and the expression of alpha(v)beta(3) integrin. We employed fluorescence molecular tomographic (FMT) noninvasive imaging of these molecular activities using cathepsin sensing (ProSense, CatB FAST) and alpha(v)beta(3) integrin (IntegriSense) near-infrared fluorescence (NIRF) agents. A statistically significant increase in the ProSense and IntegriSense signal was observed within the chest region of apoE(-/-) mice (P < 0.05) versus C57BL/6 mice starting 25 and 22 weeks on high cholesterol diet, respectively. In a treatment study using ezetimibe (7 mg/kg), there was a statistically significant reduction in the ProSense and CatB FAST chest signal of treated (P < 0.05) versus untreated apoE(-/-) mice at 31 and 21 weeks on high cholesterol diet, respectively. The signal of ProSense and CatB FAST correlated with macrophage counts and was found associated with inflammatory cells by fluorescence microscopy and flow cytometry of cells dissociated from aortas. This report demonstrates that cathepsin and alpha(v)beta(3) integrin NIRF agents can be used as molecular imaging biomarkers for longitudinal detection of atherosclerosis, and cathepsin agents can monitor anti-inflammatory effects of ezetimibe with applications in preclinical testing of therapeutics and potentially for early diagnosis of atherosclerosis in patients.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23119157
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10571