1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

401–410 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Gule, N. P.; Bshena, O.; de Kwaadsteniet, M.; Cloete, T. E.; Klumperman, B.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Biomacromolecules
      6. Products :
      7. Volume :
        13
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Xen5, Xen 5, Pseudomonas aeruginosa
      12. Abstract :
        The ability of brominated furanones and other furanone compounds with 2(3H) and 2(5H) cores to inhibit bacterial adhesion of surfaces as well deactivate (destroy) them has been previously reported. The furanone derivatives 4-(2-(2-aminoethoxy)-2,5-dimethyl-3(2H)-furanone and 5-(2-(2-aminoethoxy)-ethoxy)methyl)-2(5H)-furanone were synthesized in our laboratory. These furanone derivatives were then covalently immobilized onto poly(styrene-co-maleic anhydride) (SMA) and electrospun to fabricate nonwoven nanofibrous mats with antimicrobial and cell-adhesion inhibition properties. The electrospun nanofibrous mats were tested for their ability to inhibit cell attachment by strains of bacteria commonly found in water ( Klebsiella pneumoniae Xen 39, Staphylococcus aureus Xen 36, Escherichia coli Xen 14, Pseudomonas aeruginosa Xen 5, and Salmonella tymphimurium Xen 26). Proton nuclear magnetic resonance spectroscopy ((1)H NMR), electrospray mass spectroscopy (ES-MS), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were used to confirm the structures of the synthesized furanones as well as their successful immobilization on SMA. To ascertain that the immobilized furanone compounds do not leach into filtered water, samples of water, filtered through the nanofibrous mats were analyzed using gas chromatography coupled with mass spectroscopy (GC-MS). The morphology of the electrospun nanofibers was characterized using scanning electron microscopy (SEM).
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22947312
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10550
      1. Author :
        Thomas Reiner, Rainer H. Kohler, Chong Wee Liew, Jonathan Hill, Jason Gaglia, Rohit Kulkarni and Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Bioconjugate Chemistry
      6. Products :
      7. Volume :
        21
      8. Issue :
        7
      9. Page Numbers :
        N/A
      10. Research Area :
        Metabolic Disorders
      11. Keywords :
        Beta-cells; GLP1-R; imaging; targeting; in vivo imaging; VivoTag; AngioSense; Diabetes
      12. Abstract :
        The ability to image and ultimately quantitate beta-cell mass in vivo will likely have far reaching implications in the study of diabetes biology, in the monitoring of disease progression or response to treatment, as well as for drug development. Here, using animal models, we report on the synthesis, characterization of, and intravital microscopic imaging properties of a near infrared fluorescent exendin-4 analogue with specificity for the GLP-1 receptor on beta cells (E4K12-Fl). The agent demonstrated sub-nanomolar EC50 binding concentrations, with high specificity and binding could be inhibited by GLP-1R agonists. Following intravenous administration to mice, pancreatic islets were readily distinguishable from exocrine pancreas, achieving target-to-background ratios within the pancreas of 6:1, as measured by intravital microscopy. Serial imaging revealed rapid accumulation kinetics (with initial signal within the islets detectable within 3 minutes and peak fluorescence within 20 minutes of injection) making this an ideal agent for in vivo imaging.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912453/?tool=pubmed
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4561
      1. Author :
        Cronin, M.; Akin, A. R.; Collins, S. A.; Meganck, J.; Kim, J. B.; Baban, C. K.; Joyce, S. A.; van Dam, G. M.; Zhang, N.; van Sinderen, D.; O'Sullivan, G. C.; Kasahara, N.; Gahan, C. G.; Francis, K. P.; Tangney, M.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        7
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        HCT-116-luc2, IVIS, Bioware, HCT116-luc2, Administration, Oral; Animals; Bacteria/*genetics; Cell Line, Tumor; Female; Genes, Reporter/genetics; Genetic Engineering; Glioblastoma/*microbiology/pathology/radiography; Humans; Imaging, Three-Dimensional; Luminescent Measurements/*methods; Lung Neoplasms/*microbiology/pathology/radiography; Mice; Molecular Imaging/*methods; X-Ray Microtomography
      12. Abstract :
        The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI) represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (muCT) for interpretation.In this study, the non-pathogenic commensal bacteria E. coli K-12 MG1655 and Bifidobacterium breve UCC2003, or Salmonella Typhimurium SL7207 each expressing the luxABCDE operon were intravenously (i.v.) administered to mice bearing subcutaneous (s.c) FLuc-expressing xenograft tumours. Bacterial lux signal was detected specifically in tumours of mice post i.v.-administration and bioluminescence correlated with the numbers of bacteria recovered from tissue. Through whole body imaging for both lux and FLuc, bacteria and tumour cells were co-localised. 3D BLI and muCT image analysis revealed a pattern of multiple clusters of bacteria within tumours. Investigation of spatial resolution of 3D optical imaging was supported by ex vivo histological analyses. In vivo imaging of orally-administered commensal bacteria in the gastrointestinal tract (GIT) was also achieved using 3D BLI. This study demonstrates for the first time the potential to simultaneously image multiple BLI reporter genes three dimensionally in vivo using approaches that provide unique information on spatial locations.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22295120
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10496
      1. Author :
        Pozo, J. L. del; Rouse, M. S.; Mandrekar, J. N.; Steckelberg, J. M.; Patel, R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2009
      5. Publication :
        Antimicrob Agents Chemother
      6. Products :
      7. Volume :
        53
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Aza Compounds/pharmacology, Biofilms/drug effects/*growth & development, Electricity/*adverse effects, Pseudomonas/drug effects/*growth & development, Quinolines/pharmacology, Staphylococcus/drug effects/*growth & development, Tobramycin/pharmacology IVIS, Xenogen, Xen30
      12. Abstract :
        The activity of electrical current against planktonic bacteria has previously been demonstrated. The short-term exposure of the bacteria in biofilms to electrical current in the absence of antimicrobials has been shown to have no substantial effect; however, longer-term exposure has not been studied. A previously described in vitro model was used to determine the effect of prolonged exposure (i.e., up to 7 days) to low-intensity (i.e., 20-, 200-, and 2,000-microampere) electrical direct currents on Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms. Dose- and time-dependent killing was observed. A maximum of a 6-log(10)-CFU/cm(2) reduction was observed when S. epidermidis biofilms were exposed to 2,000 microamperes for at least 2 days. A 4- to 5-log(10)-CFU/cm(2) reduction was observed when S. aureus biofilms were exposed to 2,000 microamperes for at least 2 days. Finally, a 3.5- to 5-log(10)-CFU/cm(2) reduction was observed when P. aeruginosa biofilms were exposed to electrical current for 7 days. A higher electrical current intensity correlated with greater decreases in viable bacteria at all time points studied. In conclusion, low-intensity electrical current substantially reduced the numbers of viable bacteria in staphylococcal or Pseudomonas biofilms, a phenomenon we have labeled the “electricidal effect.”
      13. URL :
        http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18955534
      14. Call Number :
        137350
      15. Serial :
        7845
      1. Author :
        Leong, H. S.; Lizardo, M. M.; Ablack, A.; McPherson, V. A.; Wandless, T. J.; Chambers, A. F.; Lewis, J. D.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        PLoS One
      6. Products :
      7. Volume :
        7
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        MDA-MB-231-luc-D3H2Ln, D3H2Ln, IVIS, Breast cancer, Bioware, Animals; Birds/embryology; Breast Neoplasms/*metabolism; Cadherins/*metabolism; Cell Line, Tumor; Diagnostic Imaging; Epithelial-Mesenchymal Transition/drug effects; Female; Humans; Microscopy, Confocal; Microscopy, Fluorescence; Morpholines/pharmacokinetics/pharmacology; Transplantation, Heterologous; Vimentin/metabolism
      12. Abstract :
        The analysis of dynamic events in the tumor microenvironment during cancer progression is limited by the complexity of current in vivo imaging models. This is coupled with an inability to rapidly modulate and visualize protein activity in real time and to understand the consequence of these perturbations in vivo. We developed an intravital imaging approach that allows the rapid induction and subsequent depletion of target protein levels within human cancer xenografts while assessing the impact on cell behavior and morphology in real time. A conditionally stabilized fluorescent E-cadherin chimera was expressed in metastatic breast cancer cells, and the impact of E-cadherin induction and depletion was visualized using real-time confocal microscopy in a xenograft avian embryo model. We demonstrate the assessment of protein localization, cell morphology and migration in cells undergoing epithelial-mesenchymal and mesenchymal-epithelial transitions in breast tumors. This technique allows for precise control over protein activity in vivo while permitting the temporal analysis of dynamic biophysical parameters.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22276156
      14. Call Number :
        PKI @ kd.modi @ 1
      15. Serial :
        10508
      1. Author :
        Liao, A. H.; Li, Y. K.; Lee, W. J.; Wu, M. F.; Liu, H. L.; Kuo, M. L.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Ultrasound Med Biol
      6. Products :
      7. Volume :
        38
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        4T1-luc2, IVIS, Bioluminescence
      12. Abstract :
        The application of drug-loaded microbubbles (MBs) in combination with ultrasound (US), which results in an increase in capillary permeability at the site of US-sonication-induced MB destruction, may be an efficient method of localized drug delivery. This study investigated the mechanism underlying the US-mediated release of luciferin-loaded MBs through the blood vessels to targeted cells using an in vivo bioluminescence imaging (BLI) system. The luciferin-loaded MBs comprised an albumin shell with a diameter of 1234 +/- 394 nm (mean +/- SD) and contained 2.48 x 10(9) bubbles/mL; within each MB, the concentration of encapsulated luciferin was 1.48 x 10(-)(1)(0) mg/bubble. The loading efficiency of luciferin in MBs was only about 19.8%, while maintaining both the bioluminescence and acoustic properties. In vitro and in vivo BLI experiments were performed to evaluate the US-mediated release of luciferin-loaded MBs. For in vitro results, the increase in light emission of luciferin-loaded albumin-shelled MBs after destruction via US sonication (6.24 +/- 0.72 x 10(7) photons/s) was significantly higher than that in the luciferin-loaded albumin-shelled MBs (3.11 +/- 0.33 x 10(7) photons/s) (p < 0.05). The efficiency of the US-mediated release of luciferin-loaded MBs in 4T1-luc2 tumor-bearing mice was also estimated. The signal intensity of the tumor with US destruction at 3 W/cm(2) for 30 s was significantly higher than without US destruction at 3 (p = 0.025), 5 (p = 0.013), 7 (p = 0.012) and 10 (p = 0.032) min after injecting luciferin-loaded albumin-shelled MBs. The delivery efficiency was, thus, improved with US-mediated release, allowing reduction of the total injection dose of luciferin.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22929655
      14. Call Number :
        PKI @ kd.modi @ 8
      15. Serial :
        10481
      1. Author :
        Hardy, J.; Francis, K. P.; DeBoer, M.; Chu, P.; Gibbs, K.; Contag, C. H.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2004
      5. Publication :
        Science
      6. Products :
      7. Volume :
        303
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        animal cell, animal model, article, bacterial colonization, bacterial growth, bacterial virulence, bioluminescence, cell culture, controlled study, extracellular space, gallbladder, in vivo study, Listeria monocytogenes, mouse, nonhuman, priority journal IVIS, Xenogen, Xen32
      12. Abstract :
        The bacterium Listeria monocytogenes can cause a life-threatening systemic illness in humans. Despite decades of progress in animal models of listeriosis, much remains unknown about the processes of infection and colonization. Here, we report that L. monocytogenes can replicate in the murine gall bladder and provide evidence that its replication there is extracellular and intraluminal. In vivo bioluminescence imaging was employed to determine the location of the infection over time in live animals, revealing strong signals from the gall bladder over a period of several days, in diseased as well as asymptomatic animals. The data suggest that L. monocytogenes may be carried in the human gall bladder.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/14764883
      14. Call Number :
        138442
      15. Serial :
        6154
      1. Author :
        Cirstoiu-Hapca, A; Buchegger, F; Lange, N; Bossy, L; Gurny, R; Delie, F
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Journal of controlled release: official journal of the Controlled Release Society
      6. Products :
      7. Volume :
        144
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents, Phytogenic; Bioware; Cell Line, Tumor; Drug Carriers; Female; Humans; Mice; Nanoparticles; Ovarian Neoplasms; Paclitaxel; Receptor, erbB-2; SKOV3-luc-D3 cells; Tissue Distribution; Xenograft Model Antitumor Assays
      12. Abstract :
        The benefit of polymeric immuno-nanoparticles (NPs-Tx-HER), consisting of paclitaxel (Tx)-loaded nanoparticles coated with anti-HER2 monoclonal antibodies (Herceptin, trastuzumab), in cancer treatment was assessed in a disseminated xenograft ovarian cancer model induced by intraperitoneal inoculation of SKOV-3 cells overexpressing HER2 antigens. The study was focused on the evaluation of therapeutic efficacy and biodistribution of NPs-Tx-HER compared to other Tx formulations. The therapeutic efficacy was determined by two methods: bioluminescence imaging and survival rate. The treatment regimen consisted in an initial dose of 20mg/kg Tx administered as 10mg/kg intravenously (IV) and 10mg/kg intraperitonealy (IP), followed by five alternative IP and IV injections of 10mg/kg Tx every 3 days. The bioluminescence study has clearly shown the superior anti-tumor activity of NPs-Tx-HER compared to free Tx. As a confirmation of these results, a significantly longer survival of mice was observed for NPs-Tx-HER treatment compared to free Tx, Tx-loaded nanoparticles coated with an irrelevant mAb (Mabthera, rituximab) or Herceptin alone, indicating the potential of immuno-nanoparticles in cancer treatment. The biodistribution pattern of Tx was assessed on healthy and tumor bearing mice after IV or IP administration. An equivalent biodistribution profile was observed in healthy mice for Tx encapsulated either in uncoated nanoparticles (NPs-Tx) or in NPs-Tx-HER. No significant difference in Tx biodistribution was observed after IV or IP injection, except for a lower accumulation in the lungs when NPs were administered by IP. Encapsulated Tx accumulated in the organs of the reticulo-endothelial system (RES) such as the liver and spleen, whereas free Tx had a non-specific distribution in all tested organs. Compared to free Tx, the single dose injection (IV or IP) of encapsulated Tx in mice bearing tumors induced a higher tumor accumulation. However, no difference in overall tumor accumulation between NPs-Tx-HER and NPs-Tx was observed. In conclusion, the encapsulation of Tx into NPs-Tx-HER immuno-nanoparticles resulted in an improved efficacy of drug in the treatment of disseminated ovarian cancer overexpressing HER2 receptors.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20219607
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9012
      1. Author :
        Meincke, M.; Tiwari, S.; Hattermann, K.; Kalthoff, H.; Mentlein, R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2011
      5. Publication :
        Clin Exp Metastasis
      6. Products :
      7. Volume :
        28
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Breast Neoplasms/metabolism/*pathology; Cattle; Chemokine CXCL12/metabolism; Female; Fluorescent Dyes/diagnostic use; Glioma/metabolism/*pathology; Humans; Image Processing, Computer-Assisted; Mice; Mice, Nude; Receptors, CXCR/*metabolism; Receptors, CXCR4/*metabolism; Serum Albumin, Bovine/metabolism; Spectroscopy, Near-Infrared; Tumor Cells, Cultured
      12. Abstract :
        The chemokine CXCL12/SDF-1 and its receptors CXCR4 and CXCR7 play a major role in tumor invasion, proliferation and metastasis. Since both receptors are overexpressed on distinct tumor cells and on the tumor vasculature, we evaluated their potential as targets for detection of cancers by molecular imaging. We synthesized conjugates of CXCL12 and the near-infrared (NIR) fluorescent dye IRDye((R))800CW, tested their selectivity, sensitivity and biological activity in vitro and their feasibility to visualize tumors in vivo. Purified CXCL12-conjugates detected in vitro as low as 500 A764 human glioma cells or MCF-7 breast cancer cells that express CXCR7 alone or together with CXCR4. Binding was time- and concentration-dependent, and the label could be competitively displaced by the native peptide. Control conjugates with bovine serum albumin or lactalbumin failed to label the cells. In mice, the conjugate distributed rapidly. After 1-92 h, subcutaneous tumors of human MCF-7 and A764 cells in immunodeficient mice were detected with high sensitivity. Background was observed in particular in liver within the first 24 h, but also skull and hind limbs yielded some background. Overall, fluorescent CXCL12-conjugates are sensitive and selective probes to detect solid and metastatic tumors by targeting tumor cells and tumor vasculature.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21735100
      14. Call Number :
        PKI @ kd.modi @ 13
      15. Serial :
        10372
Back to Search
Select All  |  Deselect All