1. Resources
  2. Citations Library

Citation Details

You are viewing citation details. You can save or export citation(s) below, access an article, or start a new search.

181–190 of 499 records found matching your query:
Back to Search
Select All  |  Deselect All

Headers act as filters

      1. Author :
        Zuluaga, M. F.; Sekkat, N.; Gabriel, D.; van den Bergh, H.; Lange, N.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Mol Cancer Ther
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        PC-3M-luc-C6, PC-3M-luc, IVIS, Bioware, Prostate cancer, Bioluminescence
      12. Abstract :
        Frequent side effects of radical treatment modalities and the availability of novel diagnostics have raised the interest in focal therapies for localized prostate cancer. To improve the selectivity and therapeutic efficacy of such therapies, we developed a minimally invasive procedure, based on a novel polymeric photosensitizer prodrug sensitive to urokinase-like plasminogen activator (uPA). The compound is inactive in its prodrug form and accumulates passively at the tumor site by the enhanced permeability and retention effect. There, the prodrug is selectively converted to its photoactive form by uPA which is over-expressed by prostate cancer cells. Irradiation of the activated photosensitizer exerts a tumor-selective phototoxic effect. The prodrug alone (8 microM) showed no toxic effect on PC-3 cells, but upon irradiation the cell viability was reduced by 90%. In vivo, after systemic administration of the prodrug, PC-3 xenografts became selectively fluorescent. This is indicative of the prodrug accumulation in the tumor and selective local enzymatic activation. Qualitative analysis of the activated compound confirmed that the enzymatic cleavage occurred selectively in the tumor, with only trace amounts in the neighboring skin or muscle. Subsequent photodynamic therapy studies demonstrated complete tumor eradication of animals treated with light (150 J/cm2 at 665 nm) 16 hours after the injection of the prodrug (7.5 mg/kg). These promising results evidence the excellent selectivity of our prodrug with the potential to be used for both, imaging and therapy of localized prostate cancer.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/23270928
      14. Call Number :
        PKI @ kd.modi @ 5
      15. Serial :
        10542
      1. Author :
        Nahrendorf, M.; Keliher, E.; Marinelli, B.; Waterman, P.; Feruglio, P. F.; Fexon, L.; Pivovarov, M.; Swirski, F. K.; Pittet, M. J.; Vinegoni, C.; Weissleder, R.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Proc Natl Acad Sci U S A
      6. Products :
      7. Volume :
        107
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense, Animals; Flow Cytometry; Fluorescent Dyes/*diagnostic use; Image Processing, Computer-Assisted/methods; Mice; Mice, Inbred C57BL; Nanoparticles/*diagnostic use; Neoplasms/*diagnosis; Positron-Emission Tomography/*methods; Tomography, X-Ray Computed/*methods
      12. Abstract :
        Fusion imaging of radionuclide-based molecular (PET) and structural data [x-ray computed tomography (CT)] has been firmly established. Here we show that optical measurements [fluorescence-mediated tomography (FMT)] show exquisite congruence to radionuclide measurements and that information can be seamlessly integrated and visualized. Using biocompatible nanoparticles as a generic platform (containing a (18)F isotope and a far red fluorochrome), we show good correlations between FMT and PET in probe concentration (r(2) > 0.99) and spatial signal distribution (r(2) > 0.85). Using a mouse model of cancer and different imaging probes to measure tumoral proteases, macrophage content and integrin expression simultaneously, we demonstrate the distinct tumoral locations of probes in multiple channels in vivo. The findings also suggest that FMT can serve as a surrogate modality for the screening and development of radionuclide-based imaging agents.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/20385821
      14. Call Number :
        PKI @ kd.modi @ 21
      15. Serial :
        10375
      1. Author :
        Matthias Nahrendorf; Edmund Keliher; Brett Marinelli; Peter Waterman; Paolo Fumene Feruglio; Lioubov Fexon; Misha Pivovarov; Filip K. Swirski; Mikael J. Pittet; Claudio Vinegoni; Ralph Weissleder
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        PNAS
      6. Products :
      7. Volume :
        107
      8. Issue :
        17
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        fluorescence molecular tomography; FMT; Fluorescence Imaging Agents; ProSense; fluorescence-mediated tomography; molecular imaging; multimodal image fusion; computed tomography; cancer
      12. Abstract :
        Fusion imaging of radionuclide-based molecular (PET) and structural data [x-ray computed tomography (CT)] has been firmly established. Here we show that optical measurements [fluorescence-mediated tomography (FMT)] show exquisite congruence to radionuclide measurements and that information can be seamlessly integrated and visualized. Using biocompatible nanoparticles as a generic platform (containing a 18F isotope and a far red fluorochrome), we show good correlations between FMT and PET in probe concentration (r2 > 0.99) and spatial signal distribution (r2 > 0.85). Using a mouse model of cancer and different imaging probes to measure tumoral proteases, macrophage content and integrin expression simultaneously, we demonstrate the distinct tumoral locations of probes in multiple channels in vivo. The findings also suggest that FMT can serve as a surrogate modality for the screening and development of radionuclide-based imaging agents.
      13. URL :
        http://www.pnas.org/content/107/17/7910.abstract?sid=084c1ba8-0b02-4833-acdd-b57bea226faf
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4468
      1. Author :
        Seo, G. M.; Rachakatla, R. S.; Balivada, S.; Pyle, M.; Shrestha, T. B.; Basel, M. T.; Myers, C.; Wang, H.; Tamura, M.; Bossmann, S. H.; Troyer, D. L.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Mol Biol Rep
      6. Products :
      7. Volume :
        39
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals, B16-F10-luc2, B16F10-luc2
      12. Abstract :
        Gene-directed enzyme prodrug therapy (GDEPT) has been investigated as a means of cancer treatment without affecting normal tissues. This system is based on the delivery of a suicide gene, a gene encoding an enzyme which is able to convert its substrate from non-toxic prodrug to cytotoxin. In this experiment, we have developed a targeted suicide gene therapeutic system that is completely contained within tumor-tropic cells and have tested this system for melanoma therapy in a preclinical model. First, we established double stable RAW264.7 monocyte/macrophage-like cells (Mo/Ma) containing a Tet-On(R) Advanced system for intracellular carboxylesterase (InCE) expression. Second, we loaded a prodrug into the delivery cells, double stable Mo/Ma. Third, we activated the enzyme system to convert the prodrug, irinotecan, to the cytotoxin, SN-38. Our double stable Mo/Ma homed to the lung melanomas after 1 day and successfully delivered the prodrug-activating enzyme/prodrug package to the tumors. We observed that our system significantly reduced tumor weights and numbers as targeted tumor therapy after activation of the InCE. Therefore, we propose that this system may be a useful targeted melanoma therapy system for pulmonary metastatic tumors with minimal side effects, particularly if it is combined with other treatments.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/21567204
      14. Call Number :
        PKI @ kd.modi @ 6
      15. Serial :
        10351
      1. Author :
        J-C Tseng; T Granot; V DiGiacomo; B Levin; D Meruelo
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer Gene Therapy
      6. Products :
      7. Volume :
        17
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        Cancer
      11. Keywords :
        Sindbis virus; viral vector; vascular leakiness; molecular imaging; chemotherapy; cancer
      12. Abstract :
        Genetic instability of cancer cells generates resistance after initial responses to chemotherapeutic agents. Several oncolytic viruses have been designed to exploit specific signatures of cancer cells, such as important surface markers or pivotal signaling pathways for selective replication. It is less likely for cancer cells to develop resistance given that mutations in these cancer signatures would negatively impact tumor growth and survival. However, as oncolytic viral vectors are large particles, they suffer from inefficient extravasation from tumor blood vessels. Their ability to reach cancer cells is an important consideration in achieving specific oncolytic targeting and potential vector replication. Our previous studies indicated that the Sindbis viral vectors target tumor cells by the laminin receptor. Here, we present evidence that modulating tumor vascular leakiness, using VEGF and/or metronomic chemotherapy regimens, significantly enhances tumor vascular permeability and directly enhances oncolytic Sindbis vector targeting in tumor models. Because host-derived vascular endothelium cells are genetically stable and less likely to develop resistance to chemotherapeutics, a combined metronomic chemotherapeutics and oncolytic vector regimen should provide a new approach for cancer therapy. This mechanism could explain the synergistic treatment outcomes observed in clinical trials of combined therapies.
      13. URL :
        http://www.nature.com/cgt/journal/v17/n4/full/cgt200970a.html
      14. Call Number :
        PKI @ sarah.piper @
      15. Serial :
        4485
      1. Author :
        Tseng, J. C.; Granot, T.; DiGiacomo, V.; Levin, B.; Meruelo, D.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2010
      5. Publication :
        Cancer Gene Ther
      6. Products :
      7. Volume :
        17
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        AngioSense, IVIS, Alphavirus Infections/pathology/*therapy/virology; Animals; Antineoplastic Agents, Phytogenic/therapeutic use; Blotting, Western; Cell Membrane Permeability; Combined Modality Therapy; Cricetinae; Drug Delivery Systems; Female; *Genetic Vectors; Humans; Mice; Mice, SCID; Neovascularization, Pathologic/*prevention & control; Neuroblastoma/blood supply/therapy/virology; *Oncolytic Virotherapy; Ovarian Neoplasms/*blood supply/*therapy/virology; Paclitaxel/therapeutic use; Sindbis Virus/*physiology; Vascular Endothelial Growth Factor A/metabolism; Xenograft Model Antitumor Assays
      12. Abstract :
        Genetic instability of cancer cells generates resistance after initial responses to chemotherapeutic agents. Several oncolytic viruses have been designed to exploit specific signatures of cancer cells, such as important surface markers or pivotal signaling pathways for selective replication. It is less likely for cancer cells to develop resistance given that mutations in these cancer signatures would negatively impact tumor growth and survival. However, as oncolytic viral vectors are large particles, they suffer from inefficient extravasation from tumor blood vessels. Their ability to reach cancer cells is an important consideration in achieving specific oncolytic targeting and potential vector replication. Our previous studies indicated that the Sindbis viral vectors target tumor cells by the laminin receptor. Here, we present evidence that modulating tumor vascular leakiness, using VEGF and/or metronomic chemotherapy regimens, significantly enhances tumor vascular permeability and directly enhances oncolytic Sindbis vector targeting in tumor models. Because host-derived vascular endothelium cells are genetically stable and less likely to develop resistance to chemotherapeutics, a combined metronomic chemotherapeutics and oncolytic vector regimen should provide a new approach for cancer therapy. This mechanism could explain the synergistic treatment outcomes observed in clinical trials of combined therapies.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/19798121
      14. Call Number :
        PKI @ kd.modi @ 2
      15. Serial :
        10442
      1. Author :
        Yan, J.; Meng, X.; Wancket, L. M.; Lintner, K.; Nelin, L. D.; Chen, B.; Francis, K. P.; Smith, C. V.; Rogers, L. K.; Liu, Y.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        J Immunol
      6. Products :
      7. Volume :
        188
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Escherichia coli/immunology; Escherichia coli Infections/enzymology/immunology/*prevention & control; Extracellular Space/genetics/*immunology/metabolism; Glutathione Reductase/deficiency/genetics/*physiology; Humans; Mice; Mice, Inbred C3H; Mice, Knockout; Neutrophils/*immunology/*metabolism/microbiology; Oxidative Stress/genetics/*immunology; Phagocytosis/genetics/*immunology; Staphylococcal Infections/enzymology/immunology/*prevention & control; Staphylococcus aureus/immunology
      12. Abstract :
        Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, which plays an important role in the bactericidal function of phagocytes. Because Gsr has been implicated in the oxidative burst in human neutrophils and is abundantly expressed in the lymphoid system, we hypothesized that Gsr-deficient mice would exhibit marked defects during the immune response against bacterial challenge. We report in this study that Gsr-null mice exhibited enhanced susceptibility to Escherichia coli challenge, indicated by dramatically increased bacterial burden, cytokine storm, striking histological abnormalities, and substantially elevated mortality. Additionally, Gsr-null mice exhibited elevated sensitivity to Staphylococcus aureus. Examination of the bactericidal functions of the neutrophils from Gsr-deficient mice in vitro revealed impaired phagocytosis and defective bacterial killing activities. Although Gsr catalyzes the regeneration of glutathione, a major cellular antioxidant, Gsr-deficient neutrophils paradoxically produced far less reactive oxygen species upon activation both ex vivo and in vivo. Unlike wild-type neutrophils that exhibited a sustained oxidative burst upon stimulation with phorbol ester and fMLP, Gsr-deficient neutrophils displayed a very transient oxidative burst that abruptly ceased shortly after stimulation. Likewise, Gsr-deficient neutrophils also exhibited an attenuated oxidative burst upon encountering E. coli. Biochemical analysis revealed that the hexose monophosphate shunt was compromised in Gsr-deficient neutrophils. Moreover, Gsr-deficient neutrophils displayed a marked impairment in the formation of neutrophil extracellular traps, a bactericidal mechanism that operates after neutrophil death. Thus, Gsr-mediated redox regulation is crucial for bacterial clearance during host defense against massive bacterial challenge.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22279102
      14. Call Number :
        PKI @ kd.modi @ 3
      15. Serial :
        10398
      1. Author :
        Shi, Lei; Takahashi, Kazue; Dundee, Joseph; Shahroor-Karni, Sarit; Thiel, Steffen; Jensenius, Jens Christian; Gad, Faten; Hamblin, Michael R; Sastry, Kedarnath N; Ezekowitz, R Alan B
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2004
      5. Publication :
        The Journal of experimental medicine
      6. Products :
      7. Volume :
        199
      8. Issue :
        10
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Bioware; Disease Susceptibility; DNA, Bacterial; Lung; Mannose-Binding Lectin; Mice; Mice, Knockout; Reference Values; Reverse Transcriptase Polymerase Chain Reaction; Spleen; Staphylococcal Infections; Xen8.1
      12. Abstract :
        Gram-positive organisms like Staphylococcus aureus are a major cause of morbidity and mortality worldwide. Humoral response molecules together with phagocytes play a role in host responses to S. aureus. The mannose-binding lectin (MBL, also known as mannose-binding protein) is an oligomeric serum molecule that recognizes carbohydrates decorating a broad range of infectious agents including S. aureus. Circumstantial evidence in vitro and in vivo suggests that MBL plays a key role in first line host defense. We tested this contention directly in vivo by generating mice that were devoid of all MBL activity. We found that 100% of MBL-null mice died 48 h after exposure to an intravenous inoculation of S. aureus compared with 45% mortality in wild-type mice. Furthermore, we demonstrated that neutrophils and MBL are required to limit intraperitoneal infection with S. aureus. Our study provides direct evidence that MBL plays a key role in restricting the complications associated with S. aureus infection in mice and raises the idea that the MBL gene may act as a disease susceptibility gene against staphylococci infections in humans.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/15148336
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9994
      1. Author :
        Pickert, G.; Lim, H. Y.; Weigert, A.; Haussler, A.; Myrczek, T.; Waldner, M.; Labocha, S.; Ferreiros, N.; Geisslinger, G.; Lotsch, J.; Becker, C.; Brune, B.; Tegeder, I.
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2012
      5. Publication :
        Int J Cancer
      6. Products :
      7. Volume :
        N/A
      8. Issue :
        N/A
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        IntegriSense
      12. Abstract :
        GTP cyclohydrolase (GCH1) is the key-enzyme to produce the essential enzyme cofactor, tetrahydrobiopterin. The byproduct, neopterin is increased in advanced human cancer and used as cancer-biomarker, suggesting that pathologically increased GCH1 activity may promote tumor growth. We found that inhibition or silencing of GCH1 reduced tumor cell proliferation and survival and the tube formation of human umbilical vein endothelial cells, which upon hypoxia increased GCH1 and endothelial NOS expression, the latter prevented by inhibition of GCH1. In nude mice xenografted with HT29-Luc colon cancer cells GCH1 inhibition reduced tumor growth and angiogenesis, determined by in vivo luciferase and near-infrared imaging of newly formed blood vessels. The treatment with the GCH1 inhibitor shifted the phenotype of tumor associated macrophages from the proangiogenic M2 towards M1, accompanied with a shift of plasma chemokine profiles towards tumor-attacking chemokines including CXCL10 and RANTES. GCH1 expression was increased in mouse AOM/DSS-induced colon tumors and in high grade human colon and skin cancer and oppositely, the growth of GCH1-deficient HT29-Luc tumor cells in mice was strongly reduced. The data suggest that GCH1 inhibition reduces tumor growth by (i) direct killing of tumor cells, (ii) by inhibiting angiogenesis, and (iii) by enhancing the antitumoral immune response.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/22753274
      14. Call Number :
        PKI @ kd.modi @ 17
      15. Serial :
        10377
      1. Author :
        Burkatovskaya, Marina; Castano, Ana P; Demidova-Rice, Tatiana N; Tegos, George P; Hamblin, Michael R
      2. Title :
      3. Type :
        Journal Article
      4. Year :
        2008
      5. Publication :
        Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society
      6. Products :
      7. Volume :
        16
      8. Issue :
        3
      9. Page Numbers :
        N/A
      10. Research Area :
        N/A
      11. Keywords :
        Animals; Anti-Infective Agents; Bandages; Biocompatible Materials; Bioware; Chitosan; Cyclophosphamide; Male; Mice; Mice, Inbred BALB C; Staphylococcal Skin Infections; Staphylococcus aureus; Wound Healing; Wound Infection; Xen8.1
      12. Abstract :
        HemCon bandage is an engineered chitosan acetate preparation designed as a hemostatic dressing, and is under investigation as a topical antimicrobial dressing. We studied its effects on healing of excisional wounds that were or were not infected with Staphylococcus aureus, in normal mice or mice previously pretreated with cyclophosphamide (CY). CY significantly suppressed wound healing in both the early and later stages, while S. aureus alone significantly stimulated wound healing in the early stages by preventing the initial wound expansion. CY plus S. aureus showed an advantage in early stages by preventing expansion, but a significant slowing of wound healing in later stages. In order to study the conflicting clamping and stimulating effects of chitosan acetate bandage on normal wounds, we removed the bandage from wounds at times after application ranging from 1 hour to 9 days. Three days application gave the earliest wound closure, and all application times gave a faster healing slope after removal compared with control wounds. Chitosan acetate bandage reduced the number of inflammatory cells in the wound at days 2 and 4, and had an overall beneficial effect on wound healing especially during the early period where its antimicrobial effect is most important.
      13. URL :
        http://www.ncbi.nlm.nih.gov/pubmed/18471261
      14. Call Number :
        PKI @ catherine.lautenschlager @
      15. Serial :
        9986
Back to Search
Select All  |  Deselect All